Preview

Acta Biomedica Scientifica

Advanced search

Therapeutic and preventive eff ect of physical exercises in primary open-angle glaucoma

https://doi.org/10.29413/ABS.2021-6.6-1.10

Abstract

The review assesses physical exercises as an additional non-pharmacological mean of combating the progression of primary open-angle glaucoma. The ophthalmic hypotensive effect is determined by the type of exercise, its duration and intensity. Moderate aerobic activity is preferred. Among dynamic exercises, jogging has the greatest hypotensive effect. Upper body isometric resistance training provides a more lasting decrease in ophthalmotonus. The decrease in intraocular pressure (IOP) in patients with glaucoma is several times more pronounced in comparison with healthy people and occurs regardless of the nature of the local drug antihypertensive therapy. After the termination of classes IOP returns to the previous level on average within a month. An increase in ocular perfusion pressure associated with physical activity dictates the appropriateness of physical exercise for patients with pseudo-normal pressure glaucoma. The combination of hypotensive, vascular, neuroprotective effects of physical activity with a high level of physical fi tness does not exclude a decrease in the risk of development and progression of primary open-angle glaucoma. The development of indications for the use of physical activity by patients with advanced glaucoma, including those who have undergone hypotensive surgery, remains relevant. The type, intensity, dosage and mode of performing the recommended physical exercises require an individual choice.

About the Authors

E. V. Kozina
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical Universit
Russian Federation

 Dr. Sc. (Med), Head of the Department of Ophthalmology named after Professor M.A. Dmitriev with Postgraduate Education Course

Partizana Zheleznyaka str. 1, Krasnoyarsk 660022, Russian Federation



I. A. Kokh
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical Universit
Russian Federation

 Teaching Assistant at the Department of Ophthalmology named after Professor M.A. Dmitriev with Postgraduate Education Course 

Partizana Zheleznyaka str. 1, Krasnoyarsk 660022, Russian Federation



A. V. Toropov
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical Universit
Russian Federation

 Teaching Assistant at the Department of Ophthalmology named after Professor M.A. Dmitriev with Postgraduate Education Course 

Partizana Zheleznyaka str. 1, Krasnoyarsk 660022, Russian Federation



E. M. Kadomtseva
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical Universit
Russian Federation

 Cand. Sc. (Ped.), Head of the Department of Physical Education and Sports 

Partizana Zheleznyaka str. 1, Krasnoyarsk 660022, Russian Federation



E. Yu. Mozheyko
Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical Universit
Russian Federation

 Dr. Sc. (Med.), Head of the Department of Physical and Rehabilitation Medicine with Postgraduate Education Course 

Partizana Zheleznyaka str. 1, Krasnoyarsk 660022, Russian Federation



References

1. Egorov EA, Alekseev VN. Pathogenesis and treatment of primary open-angle glaucoma. Moscow: GEOTAR-Media; 2017. (In Russ.).

2. Nesterov AP. Glaucoma. Moscow: MIA; 2008. (In Russ.)

3. Caprioli J, Coleman AL. Blood fl ow in glaucoma discussion. Blood pressure, perfusion pressure and glaucoma. Am J Ophthalmol. 2010; 149(5): 704-712. doi: 10.1016/j.ajo.2010.01.018

4. Cherecheanu AP, Garhofer G, Schmidl D, Werkmeister R, Schmetterer L. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol. 2013; 13(1): 36-42. doi: 10.1016/j.coph.2012.09.003

5. McMonnies CW. Intraocular pressure and glaucoma: Is physical exercise beneficial or a risk? J Optom. 2016; 9(3): 139-147. doi: 10.1016/j.optom.2015.12.001

6. Perez CI, Singh K, Lin S. Relationship of lifestyle, exercise, and nutrition with glaucoma. Curr Opin Ophthalmol. 2019; 30(2): 82-88. doi: 10.1097/ICU.0000000000000553

7. Risner D, Ehrlich R, Kheradiya NS, Siesky B, McCranor L, Harris A. Effects of exercise on intraocular pressure and ocular blood flow: A review. J Glaucoma. 2009; 18(6): 429-436. doi: 10.1097/IJG.0b013e31818fa5f3

8. Avunduk AM, Yilmaz B, Sahin N, Kapicioglu Z, Dayanir V. The comparison of intraocular pressure reductions after isometric and isokinetic exercises in normal individuals. Ophthalmologica. 1999; 213(5): 290-294. doi: 10.1159/000027441

9. Ezhilnila S, Brinda S, Meena A, Samuel PJ. Eff ect of isometric handgrip exercise on intraocular pressure among healthy adult males. Comp Exerc Physiol. 2021; 17(2): 137-141. doi: 10.3920/CEP200048

10. Zhu MM, Lai JSM, Choy BNK, Shum JWH, Lo ACY, Ng ALK, et al. Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma‐related mental health. Acta Ophthalmol. 2018; 96(6): e676-e691. doi: 10.1111/aos.13661

11. Chromiak JA, Abadie BR, Braswell RA, Koh YS, Chilek DR. Resistance training exercises acutely reduce intraocular pressure in physically active men and women. J Strength Cond Res. 2003; 17(4): 715-720. doi: 10.1519/1533-4287(2003)017<0715:rteari>2.0.co;2

12. Brody S, Erb C, Veit R, Rau H. Intraocular pressure changes: The influence of psychological stress and the Valsalva maneuver. Biol Psychol. 1999; 51(1): 43-57. doi: 10.1016/s0301-0511(99)00012-5

13. Dickerman RD, Smith GH, Langham-Roof L, McConathy WJ, East JW, Smith AB. Intraocular pressure changes during maximal isometric contraction: Does this reflect intra-cranial pressure or retinal venous pressure? Neurol Res. 1999; 21(3): 243-246. doi: 10.1080/01616412.1999.11740925

14. Vera J, Jiménez R, Redondo B, Cárdenas D, García-Ramos A. Fitness level modulates intraocular pressure responses to strength exercises. Curr Eye Res. 2018; 43(6): 740-746. doi: 10.1080/02713683.2018.1431289

15. Bulson R, Henry S, Houser R, Tang C. Effect of aerobic exercise of three different intensities on intraocular pressure. Optom Vis Perf. 2020; 8(1): 7-14.

16. Qureshi IA. The effects of mild, moderate, and severe exercise on intraocular pressure in glaucoma patients. Jpn J Physiol. 1995; 45(4): 561-569. doi: 10.2170/jjphysiol.45.561.16

17. Yang Y, Li Z, Wang N, Wu L, Zhen Y, Wang T, et al. Intraocular pressure fluctuation in patients with primary open-angle glaucoma combined with high myopia. J Glaucoma. 2014; 23(1): 19-22. doi: 10.1097/IJG.0b013e31825afc9d

18. Hong J, Zhang H, Kuo DS, Wang H, Huo Y, Yang D, et al. The short-term effects of exercise on intraocular pressure, choroidal thickness and axial length. PLoS One. 2014; 9(8): e104294. doi: 10.1371/journal.pone.0104294

19. Kozobolis VP, Detorakis ET, Konstas AG, Achtaropoulos AK, Diamandides ED. Retrobulbar blood flow and ophthalmic perfusion in maximum dynamic exercise. Clin Exp Ophthalmol. 2008; 36(2): 123-129. doi: 10.1111/j.1442-9071.2007.01646.x

20. Era P, Pärssinen O, Kallinen M, Suominen H. Effect of bicycle ergometer test on intraocular pressure in elderly athletes and controls. Acta Ophthalmol (Copenh). 1993; 71(3): 301-307. doi: 10.1111/j.1755-3768.1993.tb07139.x

21. Vera J, Garcia-Ramos A, Redondo B, Cárdenas D, De Moraes CG, Jiménez R. Effect of a short-term cycle ergometer sprint training against heavy and light resistances on intraocular pressure responses. J Glaucoma. 2018; 27(4): 315-321. doi: 10.1097/IJG.0000000000000893

22. Qureshi IA. Effects of exercise on intraocular pressure in physically fit subjects. Clin Exp Pharmacol Physiol. 1996; 23(8): 648-652. doi: 10.1111/j.1440-1681.1996.tb01751.x

23. Qureshi IA, Xi XR, Huang YB, Wu XD. Magnitude of decrease in intraocular pressure depends upon intensity of exercise. Korean J Ophthalmol. 1996; 10(2): 109-115. doi: 10.3341/kjo.1996.10.2.109

24. Umoh IC, Olawoye OO, Baiyeroju AM. Changes in intraocular pressure after exercise in newly diagnosed glaucoma patients and normal subjects – A pilot study. Afr J Biomed Res. 2020; 23(SE1): 43-46.

25. Natsis K, Asouhidou I, Nousios G, Chatzibalis T, Vlasis K, Karabatakis V. Aerobic exercise and intraocular pressure in normotensive and glaucoma patients. BMC Ophthalmol. 2009; 9: 6. doi: 10.1186/1471-2415-9-6

26. Agrawal A. A prospective study to compare safety and efficacy of various anti-glaucoma agents and evaluate the effect of aerobic exercise on intra-ocular pressure in newly diagnosed primary open angle glaucoma patients in a tertiary care hospital. Value Health J Int Soc Pharmacoeconomics Outcome Res. 2015; 18(7): A415: doi: 10.1016/j.jval.2015.09.1003

27. Passo MS, Goldberg L, Elliot DL, Van Buskirk EM. Exercise training reduces intraocular pressure among subjects suspected of having glaucoma. Arch Ophthalmol. 1991; 109(8): 1096-1098. doi: 10.1001/archopht.1991.01080080056027

28. Hecht I, Achiron A, Man V, Burgansky-Eliash Z. Modifiable factors in the management of glaucoma: A systematic review of current evidence. Graefes Arch Clin Exp Ophthalmol. 2017; 255(4): 789-796. doi: 10.1007/s00417-016-3518-4

29. Vera J, Jiménez R, García-Ramos A, Cárdenas D. Muscular strength is associated with higher intraocular pressure in physically active males. Optom Vis Sci. 2018; 95(2): 143-149. doi: 10.1097/OPX.0000000000001169

30. Zizi M. Resisted exercises for modulation of intraocular pressure in patients with primary open-angle glaucoma: A randomized clinical trial. J Clin Anal Med. 2019; 10(2): 225-229. doi: 10.4328/JCAM.6061

31. Martin B, Harris A, Hammel T, Malinovsky V. Mechanism of exercise induced ocular hypotension. Invest Ophthalmol Vis Sci. 1999; 40(5): 1011-1015.

32. Esfahani MA, Gharipour M, Fesharakinia H. Changes in intraocular pressure after exercise test. Oman J Ophthalmol. 2017; 10(1): 17-20. doi: 10.4103/0974-620X.200689

33. Yuan Y, Lin TPH, Gao K, Zhou R, Radke NV, Lam DSC, et al. Aerobic exercise reduces intraocular pressure and expands Schlemm’s canal dimensions in healthy and primary open-angle glaucoma eyes. Indian J Ophthalmol. 2021; 69(5): 1127-1134. doi: 10.4103/ijo.IJO_2858_20

34. Jasien JV, Jonas JB, de Moraes CG, Ritch R. Intraocular pressure rise in subjects with and without glaucoma during four common yoga positions. PLoS One. 2015; 10(12): e0144505. doi: 10.1371/journal.pone.0144505

35. Vera J, García-Ramos A, Jiménez R, Cárdenas D. The acute effect of strength exercises at different intensities on intraocular pressure. Graefes Arch Clin Exp Ophthalmol. 2017; 255(11): 2211-2217. doi: 10.1007/s00417-017-3735-5

36. Vera J, Jiménez R, Redondo B, Torrejón A, De Moraes CG, García-Ramos A. Eff ect of the level of eff ort during resistance training on intraocular pressure. Eur J Sport Sci. 2019; 19(3): 394-401. doi: 10.1080/17461391.2018.1505959

37. Flammer J. Glaucoma: A guide for patients, an introduction for care-providers, a quick reference. Bern: Hogrefe & Huber Publ.; 2006.

38. Udenia H, Mittal S, Agrawal A, Singh A, Singh A, Mittal SK. Yogic pranayama and diaphragmatic breathing: Adjunct therapy for intraocular pressure in patients with primary open-angle glaucoma: A randomized controlled trial. J Glaucoma. 2021; 30(2): 115-123. doi: 10.1097/IJG.0000000000001697

39. Vera J, Redondo B, Perez-Castilla A, Koulieris GA, Jiménez R, Garcia-Ramos A. The intraocular pressure response to lower-body and upper-body isometric exercises is affected by the breathing pattern. Eur J Sport Sci. 2021; 21(6): 879-886. doi: 10.1080/17461391.2020.1790670

40. Vera J, Redondo B, Koulieris G, Torrejon A, Jiménez R, Garcia-Ramos A. Intraocular pressure responses to four different isometric exercises in men and women. Optom Vis Sci. 2020; 97(8): 648-653. doi: 10.1097/OPX.0000000000001545

41. Nowak M, Gajda R, Drygas W, Rębowska E, DziankowskaZaborszczyk E, Kwaśniewska M. Effect of repeated endurance exercise on intraocular pressure in healthy subjects: A prospective pilot study based on a 500-km swim relay. Klinika Oczna/ Acta Ophthalmologica Polonica. 2020; 122(2): 54-59. doi: 10.5114/ko.2020.96557

42. Jiménez R, Molina R, García JA, Redondo B, Vera J. Wearing swimming goggles reduces central corneal thickness and anterior chamber angle, and increases intraocular pressure. Curr Eye Res. 2020; 45(5): 535-541. doi: 10.1080/02713683.2019.1662056

43. Paula AP, Paula JS, Silva MJ, Rocha EM, De Moraes CG, Rodrigues ML. Effects of swimming goggles wearing on intraocular pressure, ocular perfusion pressure, and ocular pulse amplitude. J Glaucoma. 2016; 25(10): 860-864. doi: 10.1097/IJG.0000000000000482

44. Janicijevic D, Redondo B, Jiménez R, Lacorzana J, GarcíaRamos A, Vera J. Intraocular pressure responses to walking with surgical and FFP2/N95 face masks in primary open-angle glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 2021; 259(8): 2373-2378. doi: 10.1007/s00417-021-05159-3

45. Bozkurt B, Okudan N, Belviranli M, Oflaz AB. The evaluation of intraocular pressure fluctuation in glaucoma subjects during submaximal exercise using an ocular telemetry sensor. Indian J Ophthalmol. 2019; 67(1): 89-94. doi: 10.4103/ijo.IJO_585_18

46. Pournaras CJ, Riva CE, Bresson-Dumont H, De Gottrau P, Bechetoille A. Regulation of optic nerve head blood flow in normal tension glaucoma patients. Eur J Ophthalmol. 2004; 14(3): 226-235. doi: 10.1177/112067210401400307

47. Vera J, Jiménez R, Redondo B, García-Ramos A, Cárdenas D. Effect of a maximal treadmill test on intraocular pressure and ocular perfusion pressure: The mediating role of fitness level. Eur J Ophthalmol. 2020; 30(3): 506-512. doi: 10.1177/1120672119832840

48. Harris A, Gross J, Moore N, Do T, Huang A, Gama W, et al. The effects of antioxidants on ocular blood flow in patients with glaucoma. Acta Ophthalmol. 2018; 96(2): e237-e241. doi: 10.1111/aos.13530

49. Thirupathi A, de Souza CT. Multiregulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPKSIRT1 during exercise. J Physiol Biochem. 2017; 73(4): 487-494. doi: 10.1007/s13105-017-0576-y

50. Insa-Sánchez G, Fuentes-Broto L, Cobos A, Orduna Hospital E, Segura F, Sanchez-Cano A, et al. Choroidal thickness and volume modifications induced by aerobic exercise in healthy young adults. Ophthalmic Res. 2021; 64(4): 604-612. doi: 10.1159/000511201

51. Yip JL, Broadway DC, Luben R, Garway-Heath DF, Hayat S, Dalzell N, et al. Physical activity and ocular perfusion pressure: The EPIC-Norfolk eye study. Invest Ophthalmol Vis Sci. 2011; 52(11): 8186-8192. doi: 10.1167/iovs.11-8267

52. Portmann N, Gugleta K, Kochkorov A, Polunina A, Flammer J, Orgul S. Choroidal blood flow response to isometric exercise in glaucoma patients and patients with ocular hypertension. Invest Ophthalmol Vis Sci. 2011; 52(10): 7068-7073. doi: 10.1167/iovs.11-7758

53. Bata AM, Fondi K, Witkowska KJ, Werkmeister RM, Hommer A, Vass C, et al. Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma. Acta Ophthalmol. 2019; 97(1): e36-e41. doi: 10.1111/aos.13850

54. Gracitelli CPB, de Faria NVL, Almeida I, Dias DT, Vieira JM, Dorairaj S, et al. Exercise-induced changes in ocular blood flow parameters in primary open-angle glaucoma patients. Ophthalmic Res. 2020; 63(3): 309-313. doi: 10.1159/000501694

55. Tribble JR, Hui F, Jöe M, Bell K, Chrysostomou V, Crowston JG, et al. Targeting diet and exercise for neuroprotection and neurorecovery in glaucoma. Cells. 2021; 10(2): 295. doi: 10.3390/cells10020295

56. Chrysostomou V, Galic S, van Wijngaarden P, Trounce IA, Steinberg GR, Crowston JG. Exercise reverses age-related vulnerability of the retina to injury by preventing complement-mediated synapse elimination via a BDNF-dependent pathway. Aging Cell. 2016; 15(6): 1082-1091. doi: 10.1111/acel.12512

57. Chrysostomou V, Kezic JM, Trounce IA, Crowston JG. Forced exercise protects the aged optic nerve against intraocular pressure injury. Neurobiol Aging. 2014; 35(7): 1722-1725. doi: 10.1016/j.neurobiolaging.2014.01.019

58. Feng L, Chen H, Yi J, Troy JB, Zhang HF, Liu X. Long-term protection of retinal ganglion cells and visual function by brainderived neurotrophic factor in mice with ocular hypertension. Invest Ophthalmol Vis Sci. 2016; 57(8): 3793-3802. doi: 10.1167/iovs.16-19825

59. Boia R, Ruzafa N, Aires ID, Pereiro X, Ambrósio AF, Vecino E, et al. Neuroprotective strategies for retinal ganglion cell degeneration: Current status and challenges ahead. Int J Mol Sci. 2020; 21(7): 2262. doi: 10.3390/ijms21072262

60. Kim CS, Park S, Chun Y, Song W, Kim HJ, Kim J. Treadmill exercise attenuates retinal oxidative stress in naturally-aged mice: An immunohistochemical study. Int J Mol Sci. 2015; 16(9): 21008-21020. doi: 10.3390/ijms160921008

61. Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical exercise and brain mitochondrial fitness: The possible role against Alzheimer’s disease. Brain Pathol. 2016; 26(5): 648-663. doi: 10.1111/bpa.12403

62. Chen YY, Lai YJ, Yen YF, Shen YC, Wang CY, Liang CY, et al. Association between normal tension glaucoma and the risk of Alzheimer’s disease: A nationwide population-based cohort study in Taiwan. BMJ Open. 2018; 8(11): e022987. doi: 10.1136/bmjopen-2018-022987 68

63. Prokopenko SV, Barankin BV, Mar’ina NM, Mozheiko EYu, Zubritskaya EM, Chanchikova NG, et al. Diagnostics of Alzheimer’s disease using PET/CT: Clinical survey. Siberian Medical Review. 2018; 114(6): 67-73. (In Russ.). doi: 10.20333/2500136-2018-6-67-73

64. Koberskaya NN. The role of mitochondrial dysfunction in Alzheimer’s disease. Meditsinskiy sovet = Medical Council. 2019; 12: 34-40. (In Russ.). doi: 10.21518/2079-701X-2019-12-34-40

65. Lin SC, Wang SY, Pasquale LR, Singh K, Lin SC. The relation between exercise and glaucoma in a South Korean populationbased sample. PLoS One. 2017; 12(2): e0171441. doi: 10.1371/journal.pone.0171441

66. Fujiwara K, Yasuda M, Hata J, Yoshida D, Kishimoto H, Hashimoto S, et al. Long-term regular exercise and intraocular pressure: The Hisayama study. Graefes Arch Clin Exp Ophthalmol. 2019; 257(11): 2461-2469. doi: 10.1007/s00417-019-04441-9

67. Barton K, Gazzard G, Jayaram H. Sharing best practice and landmark evidence in glaucoma care. Eye News. 2019; 26(2). URL: https://www.eyenews.uk.com/features/ophthalmology/post/sharing-best-practice-and-landmark-evidence-in-glaucoma-care [date of access: 18.05.2021].

68. Olszewska H, Kosny J, Jurowski P, Jegier A. Physical activity of patients with a primary open angle glaucoma. Int J Ophthalmol. 2020; 13(7): 1102-1108. doi: 10.18240/ijo.2020.07.14

69. Meier NF, Lee DC, Sui X, Blair SN. Physical activity, cardiorespiratory fitness, and incident glaucoma. Med Sci Sports Exerc. 2018; 50(11): 2253-2258. doi: 10.1249/MSS.0000000000001692

70. Tseng VL, Yu F, Coleman AL. Association between exercise intensity and glaucoma in the National Health and Nutrition Examination Survey. Ophthalmol Glaucoma. 2020; 3(5): 393-402. doi: 10.1016/j.ogla.2020.06.001

71. Kawakami R, Gando Y, Kato K, Sawada SS, Momma H, Miyachi M, et al. Prospective cohort study of muscular and performance fitness and incident glaucoma: The Niigata Wellness Study. J Phys Act Health. 2020; 17(11): 1171-1178. doi: 10.1123/jpah.2019-0660

72. Pan X, Xu K, Wang X, Chen G, Cheng H, Liu AJ, et al. Evening exercise is associated with lower odds of visual field progression in Chinese patients with primary open angle glaucoma. Eye Vis (Lond). 2020; 7: 12. doi: 10.1186/s40662-020-0175-9

73. Yokota S, Takihara Y, Kimura K, Takamura Y, Inatani M. The relationship between self-reported habitual exercise and visual field defect progression: A retrospective cohort study. BMC Ophthalmol. 2016; 16(1): 147. doi: 10.1186/s12886-016-0326-x

74. Lee MJ, Wang J, Friedman DS, Boland MV, De Moraes CG, Ramulu PY. Greater physical activity is associated with slower visual fi eld loss in glaucoma. Ophthalmology. 2019; 126(7): 958-964. doi: 10.1016/j.ophtha.2018.10.012

75. Lam DSC, Tham CCY, Ritch R. Normal pressure glaucoma: The challenge in Asia and the scientific contributions from Asia. Asia Pac J Ophthalmol (Phila). 2019; 8(6): 419-421. doi: 10.1097/01.APO.0000605104.33282.14.9

76. Moreno-Montañés J, Antón-López A, Duch-Tuesta S, Corsino Fernández-Vila P, García-Feijoó J, Millá-Griñó E, et al. Lifestyles guide and glaucoma (i). Sports and activities. Arch Soc Esp Oftalmol (Engl Ed). 2018; 93(2): 69-75. doi: 10.1016/j.oftal.2017.09.005

77. Waibel S, Thomaschewski G, Herber R, Pillunat LE, Pillunat KR. Comparison of diff erent nutritional and lifestyle factors between glaucoma patients and an age-matched normal population. Klin Monbl Augenheilkd. 2021 Apr 14. doi: 10.1055/a-1396-4749

78. Wang YX, Wei WB, Xu L, Jonas JB. Physical activity and eye diseases. The Beijing Eye Study. Acta Ophthalmol. 2019; 97(3): 325-331. doi: 10.1111/aos.13962

79. Dubinina LN, Gololobov VT, Kozina EV, Lanin SN. The influence of controlled physical exercises on current diabetic retinopathy in patients with the diabetes of type 2. Acta biomedica scientifi ca. 2011; 82(6): 25-28. (In Russ.).

80. Ong SR, Crowston JG, Loprinzi PD, Ramulu PY. Physical activity, visual impairment, and eye disease. Eye (Lond). 2018; 32(8): 1296-1303. doi: 10.1038/s41433-018-0081-8


Review

For citations:


Kozina E.V., Kokh I.A., Toropov A.V., Kadomtseva E.M., Mozheyko E.Yu. Therapeutic and preventive eff ect of physical exercises in primary open-angle glaucoma. Acta Biomedica Scientifica. 2021;6(6-1):82-95. (In Russ.) https://doi.org/10.29413/ABS.2021-6.6-1.10

Views: 805


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)