Preview

Acta Biomedica Scientifica

Advanced search

Herd immunity to SARS-COV-2 in the population of the Southern regions of the Far East of Russia

https://doi.org/10.29413/ABS.2021-6.5.25

Abstract

The aim: to study the structure and dynamics of population immunity to SARSCoV-2 of the population of the Southern Regions of the Far East (SRFE): Khabarovsk, Primorsky Krai and Amur Region during the COVID-19 epidemic in 2020.

Materials and methods. The work was carried out according to the program for assessing population immunity to SARS -CoV-2 of the population of the Russian Federation according to the methodology developed by the Rospotrebnadzor with the  participation of the St.  Petersburg Pasteur Institute. The study was approved by  the  ethical committee of the St.  Petersburg Pasteur Institute. The selection of participants was carried out by a questionnaire method using cloud technologies. The  volunteers were randomized by age by stratification into 7  age groups: 1–17, 18–29, 30–39, 40–49, 50–59, 60–69, 70+ years old. Territorial randomization consisted in limiting the engaging of volunteers – no more than 30 people from one enterprise. After the initial cross-sectional study, a 3-stage seromonitoring was carried out, in which the same volunteers participated. Antibodies to the SARS-CoV-2 nucleocapsid were determined in peripheral blood serum by the enzyme immunoassay using an appropriate set of reagents produced by the State Scientific Center for Medical and Biological Sciences of the Rospotrebnadzor (Obolensk). Statistical analysis was performed using the Excel package. The confidence interval for the proportion was calculated using the A. Wald, J. Wolfowitz method with A. Agresti, B.A. Coull’s correction. The statistical significance of the differences was calculated online using a specialized calculator. The statistical significance of the differences was assessed with a probability of p˂ 0.05, unless otherwise indicated.

Results. In a comparative analysis, the highest morbidity was observed in the Khabarovsk Territory, the lowest – in the Primorsky Territory. The level of seroprevalence among the population of the region was 19.6 % (95 % CI: 18.2–21.1) in  the  Khabarovsk Territory, 19.6  % (95  %  CI: 18.1–21.2) in the Primorsky Territory19,6 % and 45,5 % (95 % CI: 43.7–47.3) in the Amur region. The highest seroprevalence was noted among 1–17 years old children, mainly due to the subgroup of 14–17-years-olds. The smallest proportion of seropositive was found among 40–49-year-olds in the Khabarovsk Territory (14.7 %, 95 % CI: 11.2–18.6), 18–28-yearolds in the Primorsky Territory (13.3 %, 95 % CI: 10.0–17.1) and 30–39-year-olds in the Amur Region (36.3  %, 95%  CI:  31.7–41.6). No statistically significant dependence of  seroprevalence on territorial and occupational factors has been established, with the exception of an increase in the proportion of seropositive medical workers in Primorsky Territory. In the process of 3-stage seromonitoring, a regular increase in the proportion of seropositive people was revealed in all SRFE. The resulting tendency is correctly described by a second-order polynomial. A relationship was revealed between the number of convalescents and persons in contact with them, which made it possible to calculate the base reproductive number (R0) in the range from 1.4 (Primorsky Territory) to 2.4 (Amur Region). Analysis of seroprevalent volunteers showed that the number of asymptomatic individuals varied from 94.1 % (95 % CI: 92.8–95.3) to 98.3 % (95 % CI: 98.8–99.2). This indicates that most of the volunteers had COVID-19 asymptomatically.

Conclusions. A comparative study showed the prevalence of seroprevalence in the Amur Region compared with the Khabarovsk and Primorsky Territories. The relationship between the number of convalescents and persons in contact with them was noted. The value of the base R0 is calculated. It has been shown that more than 90 % of seropositive individuals in the COVID-10 SRFE were asymptomatic.

About the Authors

A. Yu. Popova
Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Russian Federation

Dr. Sc. (Med.), Professor, Head, 

Vadkovsky lane 18, build. 5, 7, Moscow 127994



V. S. Smirnov
Saint Petersburg Pasteur Institute
Russian Federation

Dr. Sc. (Med.), Professor, Leading Research Officer at the Department of Molecular Epidemiology,

Mira str. 14, Saint Petersburg 197101



E. B. Ezhlova
Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Russian Federation

Cand. Sc, (Med.), Deputy Head, 

Vadkovsky lane 18, build. 5, 7, Moscow 127994



A. A. Melnikova
Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
Russian Federation

Cand. Sc. (Med.), Deputy Head of the Epidemiological Surveillance Department,

Vadkovsky lane 18, build. 5, 7, Moscow 127994



O. E. Trotsenko
Khabarovsk Research Institute of Epidemiology and Microbiology
Russian Federation

Dr. Sc. (Med.), Director, 

Shevchenko str. 2, Khabarovsk 680000



O. P. Kurganova
Rospotrebnadzor Administration in the Amur Region
Russian Federation

Cand. Sc. (Med.), Head,

Pervomaiskaya str. 30, Blagoveshchensk 675002



T. N. Detkovskaya
Rospotrebnadzor Administration in the Primorsky Krai
Russian Federation

Head, 

Selskaya str. 3, Vladivostok 690087



L. V. Lyalina
Saint Petersburg Pasteur Institute
Russian Federation

Dr. Sc. (Med.), Professor, Head of the Laboratory of Epidemiology of Infectious and Non-infectious Diseases,

Mira str. 14, Saint Petersburg 197101



E. I. Abbasova
Rospotrebnadzor Administration in the Primorsky Krai
Russian Federation

Head of the Epidemiological Department,

Selskaya str. 3, Vladivostok 690087



O. M. Yurgina
Center for Hygiene and Epidemiology in the Amur Region
Russian Federation

Chief Physician,

Pervomaiskaya str. 30, Blagoveshchensk 675002



O. B. Romanova
Center for Hygiene and Epidemiology in Primorsky Krai
Russian Federation

Chief Physician,

Utkinskaya str. 36, Vladivostok 690000



E. V. Pyatyrova
Center for Hygiene and Epidemiology in Primorsky Krai
Russian Federation

Deputy Chief Physician for Expert Activities,

Utkinskaya str. 36, Vladivostok 690000



E. N. Burdinskaya
Center for Hygiene and Epidemiology in the Amur Region
Russian Federation

Deputy Chief Physician,

Pervomaiskaya str. 30, Blagoveshchensk 675002



A. S. Solokhin
Rospotrebnadzor Administration in the Amur Region
Russian Federation

Deputy Head, 

Pervomaiskaya str. 30, Blagoveshchensk 675002



E. V. Bogdan
Center for Hygiene and Epidemiology in the Amur Region
Russian Federation

Epidemiologist,

Pervomaiskaya str. 30, Blagoveshchensk 675002



E. A. Bazykina
Khabarovsk Research Institute of Epidemiology and Microbiology
Russian Federation

Junior Research Officer,

Shevchenko str. 2, Khabarovsk 680000



A. A. Totolian
Saint Petersburg Pasteur Institute
Russian Federation

Dr. Sc. (Med.), Professor, Academician of RAS, Director, 

Mira str. 14, Saint Petersburg 197101



References

1. WHO Director-General’s remarks at the media briefing on 2019- nCoV on 11 February 2020. URL: https://www.who.int/ru/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefingon-2019-ncov-on-11-february-2020 [date of access: 08.07.2021].

2. Raboisson D, Lhermie G. Living with COVID-19: A systemic and multi-criteria approach to enact evidence-based health policy. Front Public Health. 2020; 8: 294. doi: 10.3389/fpubh.2020.00294

3. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet. 2020; 395(10242): 1973-1987. doi: 10.1016/S0140-6736(20)31142-9

4. Greiner J, Naik H, Johnson MR, Liu D, Silvestre B, Ballouk H, et al. Learning from the first wave: Lessons about managing patient flow and resource utilization on medical wards at providence health during the COVID-19 pandemic. Healthc (Amst). 2021; 9(2): 00530. doi: 10.1016/j.hjdsi.2021.100530

5. The incidence of coronavirus. URL: https://coronavirusmonitor.ru [date of access: 07/09/2021]. (In Russ.).

6. Popova AYu, Ezhlova EB, Melnikova AA, Patyashina MA, Sizova EP, Yuzlibaeva LR, et al. Distribution of SARS-CоV-2 seroprevalence among residents of the Republic of Tatarstan during the COVID-19 epidemic period. Journal of Microbiology, Epidemiology and Immunobiology = Zhurnal mikrobiologii, èpidemiologii i immunobiologii. 2020; 97(6): 518-528. (In Russ.). doi: 10.36233/0372-9311-2020-97-6-2

7. Sharma A, Farouk IA, Lal SK. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses. 2021; 13(2): 202. doi: 10.3390/v13020202

8. Wolff F, Dahma H, Duterme C, Van den Wijngaert S, Vandenberg O, Cotton F, et al. Monitoring antibody response following SARS-CoV-2 infection: Diagnostic efficiency of 4 automated immunoassays. Diagn Microbiol Infect Dis. 2020; 98(3): 115140. doi: 10.1016/j.diagmicrobio.2020.115140

9. Rostami A, Sepidarkish M, Leeflang MMG, Riahi SM, Shiadeh MN, Esfandyari S, et al. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin Microbiol Infect. 2020; 27(3): 331-340. doi: 10.1016/j.cmi.2020.10.020

10. World Health Organization. Public health surveillance for COVID-19: Interim guidance. URL: https://www.who.int/publications-detail/global-surveillance-for-human-infection-with-novelcoronavirus-(2019-ncov) [date of access: 09.07.2021].

11. Vabret N, Britton GJ, Gruber C, Hegd S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current state of the science. Immunity. 2020; 52(6): 910-941. doi: 10.1016/j.immuni.2020.05.002

12. Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity. 2020; 52(5): 737-741. doi: 10.1016/j.immuni.2020.04.012

13. Beeraka NM, Tulimilli SRV, Karnik M, Sadhu SP, Pragada RR, Aliev G, et al. The current status and challenges in the development of vaccines and drugs against Severe Acute Respiratory SyndromeCorona Virus-2 (SARS-CoV-2). Biomed Res Int. 2021; 2021: 8160860. doi: 10.1155/2021/8160860

14. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021; 397(10275): 671-681. doi: 10.1016/S0140-6736(21)00234-8

15. Stamatatos L, Czartoski J, Wan Y-H, Homad LJ, Rubin V, Glantz H, et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science. 2021; eabg9175. doi: 10.1126/science.abg9175

16. Balicer RD, Ohana R. Israel’s COVID-19 endgame. Science. 2021; 372(6543): 663. doi: 10.1126/science.abj3858

17. Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA, et al. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: An immunological study. Lancet. 2021; 2(10): e527-e535. doi: 10.1016/S2666-5247(21)00129-4

18. Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet. 2021; 397(10292): 2331-2333. doi: 10.1016/S0140-6736(21)01290-3

19. Vignesh R, Shankar EM, Velu V, Thyagarajan SP. Is herd immunity against SARS-CoV-2 a silver lining? Front Immunol. 2020; 11: 586781. doi: 10.3389/fimmu.2020.586781

20. Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science. 2020; 369(6505): 846-849. doi: 10.1126/science.abc6810

21. Popova AYu, Ezhlova EB, Mel’nikova AA, Bashketova NS, Fridman RK, Lyalina LV, et al. Herd immunity to SARS-CoV-2 among the population in Saint-Petersburg during the COVID-19 epidemic. Problems of Particularly Dangerous Infections. 2020; (3): 124-130. (In Russ.). doi: 10.21055/0370-1069-2020-3-124-130

22. Population-based age-stratified seroepidemiological investigation protocol for COVID-19 infection. URL: https://www.who.int/publications/i/item/WHO-2019-nCoV-Seroepidemiology-2020.2 [date of access: 10.07.2021].

23. World Medical Association Declaration of Helsinki. URL: http://acto-russia.org/index.php?option=com_content&task=view&id=21 [date of access: 10.07.2021]. (In Russ.).

24. Calculation of the required sample size. URL: https://bstudy.net/672834/sotsiologiya/raschet_neobhodimoy_chislennosti_vyborki [date of access: 07.15.2021]. (In Russ.).

25. Popova AYu, Ezhlova EB, Mel’nikova AA, Historik OA, Mosevich OS, Lyalina LV, et al. Assessment of the herd immunity to SARS-CoV-2 among the population of the Leningrad region during the COVID-19 epidemic. Problems of Particularly Dangerous Infections. 2020; (3): 114-123. (In Russ.). doi: 10.21055/0370-1069-2020-3-114-123

26. Standard error of the proportion. URL: https://statanaliz.info/statistica/opisaniedannyx/dispersiya-i-standartnaya-oshibkadoli [date of access: 10.07.2021]. (In Russ.).

27. Wald A, Wolfowitz J. Confidence limits for continuous distribution functions. Ann Math Statist. 1939; 10(2): 105-118. URL: www.jstor.org/stable/2235689. [Date of access: 10.07. 2021]

28. Agresti A, Coull BA. Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat. 1998; 52(2): 119-126. doi: 10.2307/2685469

29. Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993; 2(1): 23-41. doi: 10.1177/096228029300200103

30. Calculator of significant differences (z-test). URL: https://radar-research.ru/software/z-test_calculator [date of access: 10.07.2021]. (In Russ.).

31. Popova AYu, Ezhlova EB, Melnikova AA, Trotsenko OE, Zaitseva TA, Lyalina LV, et al. The seroprevalence of SARS-CoV-2 among residents of the Khabarovsk Krai during the COVID-19 epidemic. Journal of Microbiology, Epidemiology and Immunobiology = Zhurnal mikrobiologii, èpidemiologii i immunobiologii. 2021; 98(1): 7-17. doi: 10.36233/0372-9311-92

32. Wikipedia – The Free Encyclopedia. URL: https://ru.wikipedia.org [date of access: 10.07.2021]. (In Russ.).

33. Statdata.ru – site about countries and cities. URL: http:// www.statdata.ru [date of access: 10.07.2021]. (In Russ.).

34. Siff EJ, Aghagoli G, Gallo Marin B, Tobin-Tyler E, Poitevien P. SARS-CoV-2 transmission: A sociological review. Epidemiol Infect. 2020; 148: e242. doi: 10.1017/S095026882000240X

35. Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo C-G, Ma W, et al. Risk of COVID-19 among front-line health-care workers and the general community: A prospective cohort study. Lancet Public Health. 2020; 5(9): e475-e483. doi: 10.1016/S2468-2667(20)30164-X

36. Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection. PLoS One. 2020; 15(4): e0232452. doi: 10.1371/journal.pone.0232452

37. Harris OO, Leblanc N, McGee K, Randolph S, Wharton MJ, Relf M. Alarm at the gate-health and social inequalities are comorbid conditions of HIV and COVID-19. J Assoc Nurses AIDS Care. 2020; 31(4): 367-375. doi: 10.1097/JNC.0000000000000190

38. Popova AYu, Andreeva EE, Babura EA, Balakhonov SV, Bashketova NS, Bulanov MV, et al. Features of developing SARSCoV-2 nucleocapsid protein population-based seroprevalence during the first wave of the COVID-19 epidemic in the Russian Federation. Russian Journal of Infection and Immunity = Infektsiya i immunitet. 2021; 11(2): 297-323. (In Russ.). doi: 10.15789/2220-7619-FOD-1684

39. Fialkowski A, Gernez Y, Arya P, Weinacht KG, Kinane TB, Yonker LM. Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection. Pediatr Pulmonol. 2020; 55(10): 2556-2564. doi: 10.1002/ppul.24981

40. Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARSCoV-2 infections. Nat Med. 2020; 26(8): 1200-1204. doi: 10.1038/s41591-020-0965-6

41. Han D, Li R, Han Y, Zhang R, Li J. COVID-19: Insight into the asymptomatic SARS-COV-2 infection and transmission. Int J Biol Sci. 2020: 16(15): 2803-2811. doi: 10.7150/ijbs.48991

42. Oran DP, Topol E.J. Prevalence of asymptomatic SARSCoV-2 infection: A narrative review. Ann Intern Med. 2020; 173(5): 362-367. doi: 10.7326/M20-3012

43. Khoshchehreh M, Wald-Dickler N, Holtom P, ButlerWu SM. A needle in the haystack? Assessing the significance of envelope (E) gene-negative, nucleocapsid (N2) genepositive SARS-CoV-2 detection by the Cepheid Xpert Xpress SARS-CoV-2 assay. J Clin Virol. 2020; 133: 104683. doi: 10.1016/j.jcv.2020.104683

44. Wolff F, Dahma H, Duterme C, Van den Wijngaert S, Vandenberg O, Cotton F, et al. Monitoring antibody response following SARS-CoV-2 infection: Diagnostic efficiency of 4 automated immunoassays. Diagn Microbiol Infect Dis. 2020; 98(3): 115140. doi: 10.1016/j.diagmicrobio.2020.115140

45. Estudio ene-covid: Informe final estudio nacional de seroepidemiología de la infección por SARS-CoV-2 en España/Ministerio de Sanidad, Consumo y Bienestar Social. URL: https://www.mscbs.gob.es/ciudadanos/ene-covid/docs/ESTUDIO_ENE-COVID19_INFORME_FINAL.pdf [date of access: 10.07.2021].

46. Lai C-C, Wang J-H, Hsueh P-R. Population-based seroprevalence surveys of anti-SARS-CoV-2 antibody: An upto-date review. Int J Inf Dis. 2020; 101: 314-322. doi: 10.1016/j.ijid.2020.10.011

47. Iversen K, Bundgaard H, Hasselbalch RB, Kristensen JH, Nielsen PB, Pries-Heje M, et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. Lancet Infect. Dis. 2020; 20(12): 1401-1408. doi: 10.1016/S1473-3099(20)30589-2

48. Hunter BR, Dbeibo L, Weaver CS, Beeler C, Saysana M, Zimmerman MK, et al. Seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies among healthcare workers with differing levels of coronavirus disease 2019 (COVID-19) patient exposure. Infect Control Hosp Epidemiol. 2020; 41(12): 1441-1442. doi: 10.1017/ice.2020.390

49. Chen Y, Tong X, Wang J, Huang W, Yin S, Huang R, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J Infect. 2020; 81(3): 420-426. doi: 10.1016/j.jinf.2020.05.067

50. Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARSCoV-2. Science. 2020; 369(6505): 846-849. doi: 10.1126/science.abc6810

51. Anderson RM, May RM. Vaccination and herd immunity to infectious diseases. Nature. 1985; 318(6044): 323-329. doi: 10.1038/318323a0


Review

For citations:


Popova A.Yu., Smirnov V.S., Ezhlova E.B., Melnikova A.A., Trotsenko O.E., Kurganova O.P., Detkovskaya T.N., Lyalina L.V., Abbasova E.I., Yurgina O.M., Romanova O.B., Pyatyrova E.V., Burdinskaya E.N., Solokhin A.S., Bogdan E.V., Bazykina E.A., Totolian A.A. Herd immunity to SARS-COV-2 in the population of the Southern regions of the Far East of Russia. Acta Biomedica Scientifica. 2021;6(5):253-273. (In Russ.) https://doi.org/10.29413/ABS.2021-6.5.25

Views: 1056


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)