Preview

Acta Biomedica Scientifica

Advanced search

Immunotherapy of cancer tumors with inhibition of PD-1 membrane protein and its ligands interaction

https://doi.org/10.29413/ABS.2021-6.4.13

Abstract

The identification of the PD-1 receptor by Tasuku Honjo and CTLA-4 by James Ellison marked the beginning of the study of new regulatory pathways activating the immune response. The term “immune checkpoints” was introduced to denote the system of inhibitory mechanisms that include these proteins. The review presents the literature data on the molecular characteristics of the membrane protein PD-1 (programmed cell death 1 receptor) and its role in the regulation of immunity. We consider the PD-1 pathways used of by tumor cells to escape the immune response. The discovery of immune checkpoints made it possible to develop a new type of targeting therapy for cancer. The review presents the results of clinical trials of drugs that block the interaction between the PD-1 and its ligands in various types of cancer. These drugs include nivolumab, pembrolizumab, and avelumab. Studies of these drugs efficacy in patients with various types of cancer localization were conducted within the CheckMate, KEYNOTE and JAVELIN Solid Tumor programs, with some research being in progress. We analyze the results of studying the clinical efficacy of the drugs in patients with melanoma, lung cancer, renal cell cancer, colorectal cancer, classical Hodgkin’s lymphoma, Merkel carcinoma and stomach cancer. Both positive and inconclusive results in the treatment of patients are noted. These data made it possible to identify promising directions for the use of the drugs in certain localizations of the malignant process, as well as to determine the dose and time of their use to obtain an objective positive response to treatment.

About the Authors

A. V. Chetveryakov
Chita State Medical Academy
Russian Federation

 Postgraduate at the Department of the Advanced Level Surgery

 Gorkogo str. 39A, Chita 672000, Russian Federation 



V. L. Tsepelev
Chita State Medical Academy
Russian Federation

 Dr. Sc. (Med.), Professor, Head of the Department of the Advanced Level Surgery

 Gorkogo str. 39A, Chita 672000, Russian Federation 



References

1. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999; 11(2): 141-151. doi: 10.1016/s1074-7613(00)80089-8

2. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al. Tissue expression of PD-L1 mediates peripheral T-cell tolerance. J Exp Med. 2006; 203(4): 883-895. doi: 10.1084/jem.20051776

3. Massari F, Santoni M, Ciccarese C, Santini D, Alfieri S, Martignoni G, et al. PD-1 blockade therapy in renal cell carcinoma: Current studies and future promises. Cancer Treat Rev. 2015; 41(2): 114-121. doi: 10.1016/j.ctrv.2014.12.01

4. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012; 24(2): 207-212. doi: 10.1016/j.coi.2011.12.009

5. Rosenwald A, Wright G, Leroy K, Xin Yu, Gaulard Ph, et al. Molecular diagnosis of primary mediastinal B-cell lymphoma identifies a clinically favorable subgroup of diffuse large B-cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003; 198(6): 851-862. doi: 10.1084/jem.20031074

6. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999; 5(12): 1365-1369. doi: 10.1038/70932

7. Galluzzi L, Buque A, Keep O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015; 28(6): 690-714. doi: 10.1016/j.ccell.2015.10.012

8. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD–L2 is a second ligand for PD-1 and inhibits T-cell activation. Nat Immunol. 2001; 2(3): 261-268. doi: 10.1038/85330

9. Zhao C, Telia SH, Del Rivero J, Kommalapati A, Ebenuwa I, Gulley J, et al. Anti-PD-L1 treatment induced central diabetes insipidus. J Clin Endocrinol Metab. 2018; 103(2): 365-369. doi: 10.1210/jc.2017-01905

10. Spencer CW, Colm RD, James PA. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018; 8(9): 1069-1086. doi: 10.1158/2159-8290

11. Peng Q, Deng Z, Pan H, Gu L, Liu O, Tang Z. Mitogenactivated protein kinase signaling pathway in oral cancer. Oncol Lett. 2018; 15(2): 1379-1388. doi: 10.3892/ol.2017.7491

12. Stutvoet TS, Kol A, de Vries EG, de Bruyn M, Fehrmann RS, Terwisscha van Scheltinga AG, et al. MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells. J Pathol. 2019; 249(1): 52-64. doi: 10.1002/path.5280

13. Jalali S, Price-Troska T, Bothun C, Villasboas J, Kim HJ, Yang ZZ, et al. Reverse signaling via PD-L1 supports malignant cell growth and survival in classical Hodgkin lymphoma. Blood Cancer J. 2019; 9(3): 22. doi: 10.1038/s41408-019-0185-9

14. Groner B, von Manstein V. Jak-Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017; 451: 1-14. doi: 10.1016/j.mce.2017.05.033

15. Doi T, Ishikawa T, Okayama T, Oka K, Mizushima K, Yasuda T, et al. The JAK/STAT pathway is involved in the upregulation of PDL1 expression in pancreatic cancer cell lines. Oncol Rep. 2017; 37(3): 1545-1554. doi: 10.3892/or.2017.5399

16. Li P, Huang T, Zou Q, Liu D, Wang Y, Tan X, et al. FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/ STAT3 signaling pathway. J Immunol. 2019; 202(10): 3065-3075. doi: 10.4049/jimmunol.1801199

17. Ribas A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov. 2015; 5(9): 915-919. doi: 10.1158/2159-8290

18. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J Clin Invest. 2015; 125(9): 3384-3391. doi: 10.1172/JCI80011

19. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phase’s elimination, equilibrium and escape. Curr Opin Immunol. 2014; 27: 16-25. doi: 10.1016/j.coi.2014.01.004

20. Swaika A, Hammond WA, Joseph RW. Current state of antiPD-L1 and anti-PD-1 agents in cancer therapy. Mol Immunol. 2015; 67(2 Pt 2): 4-17. doi: 10.1016/j.molimm.2015.02.009

21. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007; 13(1): 84-88. doi: 10.1038/nm1517

22. Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014; 2(9): 846-856. doi: 10.1158/2326-6066.CIR-14-0040

23. Trinh B, Sanchez GO, Herzig P, Läubli H. Inflammationinduced hypoparathyroidism triggered by combination immune checkpoint blockade for melanoma. J Immunother Cancer. 2019; 7(1): 52. doi: 10.1186/s40425-019-0528-x

24. Larkin J, Minor D, D’Angelo S, Neyns B, Smylie M, Miller WH Jr, et al. Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in Check Mate 037: A randomized, controlled, open-label phase III trial. J Clin Oncol. 2018; 36(4): 383-390. doi: 10.1200/JCO.2016.71.8023

25. Albarel F, Gaudy C, Castinetti F, Carré T, Morange I, ConteDevolx B, et al. Long-term follow-up of ipilimumab-induced hypophysitis, a common adverse event of the anti-CTLA-4 antibody in melanoma. Eur J Endocrinol. 2015; 172(2): 195-204. doi: 10.1530/EJE-14-0845

26. Wilgenhof S, Neyns B. Anti-CTLA-4 antibody-induced Guillain-Barre syndrome in a melanoma patient. Ann Oncol. 2011; 22(4): 991-993. doi: 10.1093/annonc/mdr028

27. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013; 369(2): 122-133. doi: 10.1056/NEJMoa1302369

28. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015; 373(2): 123-135. doi: 10.1056/NEJMoa1504627

29. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015; 373(17): 1627-1639. doi: 10.1056/NEJMoa1507643

30. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: Results of a randomized phase II trial. J Clin Oncol. 2015; 33(13): 1430-1437. doi: 10.1200/Jœ.2014.59.0703

31. Adapted from poster presented by Plimack ER, et al. 15th International Kidney Cancer Symposium. Miami, FL, USA; 2016.

32. Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, et al. Three-year overall survival for patients with advanced melanoma treated with pembrolizumab in KEYN0TE-001. J Clin Oncol. 2016; 34(Suppl 15): 9503-9503. doi: 10.1200/JCO.2016.34.15_suppl.9503

33. Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016; 315(15): 1600-1609. doi: 10.1001/jama.2016.4059

34. Patnaik AM, Socibski MA, Gubens MA, Gandhi L, Stevenson J, Bachman RD, et al. Phase 1 study of pembrolizumab (pembro; MK-3475) plus ipilimumab (IPI) as second-line therapy for advanced non-small cell lung cancer (NSCLC): KEYN0TE-021 cohort D. J Clin Oncol. 2015; 33(15): 8011. doi: 10.1200/jco.2015.33.15_suppl.8011

35. Hamid O, Puzanov I, Dummer R, Schachter J, Daud A, Schadendorf D, et al. Final overall survival for KEYNOTE-002: pembrolizumab (pembro) versus investigator-choice chemotherapy (chemo) for ipilimumab (ipi)-refractory melanoma. Ann Oncol. 2015; 16(8): 908-918. doi: 10.1016/S1470-2045(15)00083-2

36. Ricciuti B, Genova C, Bassanelli M, De Giglio A, Brambilla M, Metro G, et al. Safety and efficacy of nivolumab in patients with advanced non-small-cell lung cancer treated beyond progression. Clin Lung Cancer. 2019; 20(3): 178-185. doi: 10.1016/j.cllc.2019.02.001

37. Lyadova MA, Pardabekova OA, Shakirov OA, Lyadov VK, Fedyanin MYu. Nivolumab in real clinical practice. Research and Practical Medicine Journal. 2019; 6(4): 84-91. (In Russ.). doi: 10.17709/2409-2231-2019-6-4-8

38. Sarzhevskii VO, Demina EA, Mochkin NE, Spornik AA, Mamedova AA, Smirnova EN, et al. Checkpoint inhibitors and classical Hodgkin’s lymphoma: Efficacy and safety of pembrolizumab in relapsed/refractory tumor (experience at the N.I. Pirogov Russian National Medical Center of Surgery). Clinical Oncohematology. 2021; 14(1): 53-62. (In Russ.). doi: 10.21320/2500-2139-2021-14-1-53-62

39. Ansell S, Lesokhin A, Borrello I, Halwani A, Scott EC, Guttierez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015; 372(4): 311-319. doi: 10.1056/NEJMoa1411087

40. Armand P, Engert A, Younes A, Fanale M, Santoro A, Zinzani PL, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: Extended follow-up of the multicohort single-arm phase II CheckMate 205. Trial J Clin Oncol. 2018; 36(14): 1428-1439. doi: 10.1200/JC0.2017.76.0793

41. Armand P, Shipp MA, Ribrag V, Michot J-M, Zinzani PL, Kuruvilla J, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016; 34(31): 3733-3739. doi: 10.1200/JC0.2016.67.3467

42. Chen R, Zinzani P, Fanale M, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017; 35(19): 2125-2132. doi: 10.1200/JC0.2016.72.1316

43. Zinzani P, Lee H, Armand P, Johnson N, Brice P, Radford J, et al. Three-year follow-up of Keynote-087: Pembrolizumab monotherapy in relapsed/refractory classic Hodgkin lymphoma. Blood. 2019; 134(1): 240. doi: 10.1182/blood-2019-127280

44. Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016; 128(21): 2489-2496. doi: 10.1182/blood-2016-05-718528

45. Younes A, Hilden P, Coiffier B, Hagenbeek A, Salles G, Wilson W, et al. International working group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol. 2017; 28(7): 1436-1447. doi: 10.1093/annonc/mdx097

46. Lepik KV. Efficacy and safety of PD-1 inhibitor (nivolumab) in the treatment of resistant and recurrent Hodgkin’s lymphoma: abstract of the dissertation of the Cand. Sc. (Med.). Saint Petersburg; 2019. (In Russ.)

47. BangYJ, Doi T, Braud FD, Piha-Paul S, Hollebecque A, Abdul Razak AR, et al. Safety and efficacy of pembrolizumab in patients with advanced biliary tract cancer: Interim results of KEYNOTE-028. Eur J Cancer. 2015; 51(3): 112. doi: 10.1016/S0959-8049(16)30326-4

48. Abou-Alfa GK, Macarulla Mercade T, Javle M, Kelley RK, Lubney S, Adeva J, et al. ClarlDHy: A global, phase 3, randomized, double-blind study of ivosidenib (IVO) vs placebo in patients with advanced cholangiocarcinoma (CC) with an isocitrate dehydrogenase 1 (IDH1) mutation. Ann Oncol. 2019; 30(Suppl 5): v851-v934. doi: 10.1093/annonc/mdz394

49. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, de JesusAcosta A, Delord J-P, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite Instability/mismatch repairdeficient cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020; 38(1): 1-10. doi: 10.1200/JCO.19.02105

50. Jan der Zwan JM, Trama A, Otter R, Larranaga N, Tavilla A, Marcos-Gragera R, et al. Rare neuroendocrine tumours: Results of the surveillance of rare cancers in Europe project. Eur J Cancer. 2013; 49(11): 2565-2578. doi: 10.1016/j.ejca.2013.02.029

51. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016; 374(26): 2542-2552. doi: 10.1056/NEJMoa1603702

52. Topalian SL, Bhatia S, Hollebecque A, Awada A, De Boer JP, Kudchadkar RR, et al. Non-comparative, open-label, multiple cohort, phase 1/2 study to evaluate nivolumab (NIVO) in patients with virus-associated tumors (CheckMate 358): Efficacy and safety in Merkel cell carcinoma (MCC). Cancer Res. 2017; 77(13): CT074. doi: 10.1158/1538-7445.AM2017-CT074

53. Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016; 17(10): 1374-1385. doi: 10.1016/S1470-2045(16)30364-3

54. Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after 1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018; 6: 7. doi: 10.1186/s40425-017-0310-x

55. Orlova KV, Nazarova VV, Petenko NN, Demidov LV. Avelumab in the treatment of patients with Merkel cell carcinoma: Initial results of early access program in Russia. Malignant tumors. 2019; 9(1): 53-58. (In Russ.). doi: 10.18 027/2224-5057-2019-9-1-53-58

56. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016; 17(6): 717-726. doi: 10.1016/S1470-2045(16)00175-3

57. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018; 4(5): e180013. doi: 10.1001/jamaoncol2018.0013

58. Chung HC, Arkenau HT, Lee J, Rha SY, Oh DY, Wyrwicz L, et al. Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophagealjunction cancer: Phase 1b results from the JAVELIn Solid Tumor trial. J Immunother Cancer. 2019; 7(1): 30. doi: 10.1186/s40425-019-0508-1

59. Ogata D, Tsuchida T. Systemic immunotherapy for advanced cutaneous squamous cell carcinoma. Curr Treat Options Oncol. 2019; 20: 30. doi: 10.1007/s11864-019-0629-2


Review

For citations:


Chetveryakov A.V., Tsepelev V.L. Immunotherapy of cancer tumors with inhibition of PD-1 membrane protein and its ligands interaction. Acta Biomedica Scientifica. 2021;6(4):146-159. (In Russ.) https://doi.org/10.29413/ABS.2021-6.4.13

Views: 868


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)