Coronavirus disease 2019 (COVID-19): NETosis-associated mechanisms of progression and prospects for therapy regulating the formation of neutrophil extracellular traps (NETs)
https://doi.org/10.29413/ABS.2021-6.4.6
Abstract
Infectious disease COVID-19 caused by the SARS-CoV-2 coronavirus is characterized by high contagiousness, complexity of pathogenesis and unpredictability of the clinical course. In severe cases, which are especially susceptible to men, the elderly and people with underlying medical conditions such as obesity, diabetes, hypertension, cardiovascular and chronic respiratory diseases, the infection leads to respiratory failure and death due to the development of an extensive inflammatory reaction. As a result of many studies, it has been established that one of the leading causes of the severe course and death of patients with COVID-19 is the development of coagulopathy, that is, increased thrombus formation in small vessels due to excessive activity of neutrophils, which form the so-called neutrophil extracellular traps (NETs). Although NETs play a useful role in protecting their host from pathogens, their overgrowth can trigger a cascade of adverse reactions including: the production of antibodies against the host’s DNA (autoimmunization); damage to surrounding tissue; or the occurrence of thromboembolic complications. Therefore, extracellular neutrophil traps and their markers have been identified as targets for new therapeutic strategies aimed at reducing the severity of COVID-19 disease and/or mortality. This article describes the structure of NETs, as well as analyzes the molecular mechanisms that contribute to their overgeneration. In addition, the prospects for COVID-19 therapy aimed at regulating the formation of extracellular traps by creating drugs both limiting the production of NET structures and dissolving their excess amounts in the body of patients are discussed.
About the Authors
K. A. AitbaevKyrgyzstan
Dr. Sc. (Med.), Professor, Head of the Laboratory of Pathological Physiology; Member of the Board of the Society of Chronic Kidney Disease Specialists of Kyrgyzstan
Togolok Moldo str. 3, Bishkek 720040, Kyrgyzstan
I. T. Murkamilov
Kyrgyzstan
Cand. Sc. (Med.), Nephrologist, Acting Associate Professor at the Department of Intermediate Level Therapy; Senior Lecturer, Chairman of the Society of Chronic Kidney Disease Specialists of Kyrgyzstan
Akhunbaeva str. 92, Bishkek 720020, Kyrgyzstan
Kievskaya str. 44, Bishkek 720000, Kyrgyzstan
V. V. Fomin
Russian Federation
Dr. Sc. (Med.), Professor, Corresponding Member of RAS, Head of the Department of Intermediate Level Therapy N 1 of the N.V. Sklifosovsky Institute of Clinical Medicine, ViceRector for Clinical Service and Advanced Professional Education
Trubetskaya str. 8 build. 2, Moscow 119991, Russian Federation
I. O. Kudaibergenova
Kyrgyzstan
Dr. Sc. (Med.), Professor, Rector
Akhunbaeva str. 92, Bishkek 720020, Kyrgyzstan
F. A. Yusupov
Kyrgyzstan
Dr. Sc. (Med.), Professor, Head of the Department of Neurology, Neurosurgery and Psychiatry of Medical Faculty; Member of the Board of the Society of Chronic Kidney Disease Specialists of Kyrgyzstan; Chief Neurologist of the Southern Region of Kyrgyzstan
Lenina str. 331, Osh 723500, Kyrgyzstan
References
1. De Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14(8): 523. doi: 10.1038/nrmicro.2016.81
2. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92(4): 418-423. doi: 10.1002/jmv.25681
3. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID19 and multi-organ response. Curr Probl Cardiol. 2020; 45(8): 100618. doi: 10.1016/j.cpcardiol.2020.100618
4. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. Collaboration HAS. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033. doi: 10.1016/S0140-6736(20)30628-0
5. Li Y, Xia L. Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management. Am J Roentgenol. 2020; 214(6): 1280-1286. doi: 10.2214/AJR.20.22954
6. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr. 2020; 14(3): 247-250. doi: 10.1016/j.dsx.2020.03.013
7. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 in patients in Wuhan. J Allergy Clin Immunol. 2020; 146(1): 110-118. doi: 10.1016/j.jaci.2020.04.006
8. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood J Am Soc Hematol. 2020; 135(23): 2033-2040. doi: 10.1182/blood.2020006000
9. Becker RC. COVID-19 update: COVID-19-associated coagulopathy. J Thromb Thrombolysis. 2020; 50(1): 54-67. doi: 10.1007/s11239-020-02134-3
10. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844-847. doi: 10.1111/jth.14768
11. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. J Thromb Haemost. 2020; 18(6): 1324-1329. doi: 10.1111/jth.14859
12. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708-1720. doi: 10.1056/NEJMoa2002032
13. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta. 2020; 506: 145-148. doi: 10.1016/j.cca.2020.03.022
14. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15): 1488-1494. doi: 10.1001/jama.2020.3204
15. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020; 18(9): 2103-2109. doi: 10.1111/jth.14975
16. Wang J. Cytokine storm and leucocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020; 108(1): 17-41. doi: 10.1002/JLB.3COVR0520-272R
17. Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am J Respir Crit. Care Med. 2019; 199(9): 1076-1085. doi: 10.1164/rccm.201810-1869OC
18. Levi M, Schultz M, van der Poll T. Disseminated intravascular coagulation in infectious disease. Semin Thromb Hemost. 2010; 36(4): 367-377. doi: 10.1055/s-0030-1254046
19. Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost. 2018; 2(3): 549-557. doi: 10.1002/rth2.12109
20. Levi M, Thachil J. Coronavirus disease 2019 coagulopathy: Disseminated intravascular coagulation and thrombotic microangiopathy either, neither, or both. Semin Thromb Hemost. 2020; 46(7): 781-784. doi: 10.1055/s-0040-1712156
21. Gilli T, Benelli G, Buscarini E, Canetta C, La Piana G, Merli G, et al. SARS-COV-2 comorbidity network and outcome in hospitalized patients in Crema, Italy. Medrxiv. 2020; 10: P10008. doi: 10.1371/journal.pone.0248498
22. Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G, et al. COVID-19, cytokines and immunosuppression: What can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020; 38(2): 337-342.
23. Lippi G, Favaloro EJ. D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb Haemost. 2020; 120(5): 876. doi: 10.1055/s-0040-1709650
24. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012; 12(3): 324-333. doi: 10.1016/j.chom.2012.06.011
25. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303: 1532-1535. doi: 10.1126/science.1092385
26. Mozzini C, Girelli D. The role of neutrophil extracellular traps in COVID-19: Only an hypothesis or a potential new field of research? Thromb Res. 2020; 191: 26-27. doi: 10.1016/j.thromres.2020.04.031
27. Dabrowska D, Jabłońska E, Garley M, Ratajczak-Wrona W, Iwaniuk A. New aspects of the biology of neutrophil extracellular traps. Scand J Immunol. 2016; 84(6): 317-322. doi: 10.1111/sji.12494
28. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217: e20200652. doi: 10.1084/jem.20200652
29. Thierry AR, Roch B. SARS-CoV2 may evade innate immune response, causing uncontrolled neutrophil extracellular traps formation and multi-organ failure. Clin Sci. 2020; 134: 1295-1300. doi: 10.1042/CS20200531
30. Tomar B, Anders HJ, Desai J, Mulay SR. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells. 2020; 9: 1383. doi: 10.3390/cells9061383
31. Nakazawa D, Ishizu A. Immunothrombosis in severe COVID-19. EBioMedicine. 2020; 59: 102942. doi: 10.1016/j.ebiom.2020.102942
32. Santocki M, Kolaczkowska E. On neutrophil extracellular trap (NET) removal: What we know thus far and why so little. Cells. 2020; 9(9): 2079. doi: 10.3390/cells9092079
33. Vorobjeva NV, Chernyak BV. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Moscow). 2020; 85(10): 1383-1397. (In Russ.). doi: 10.31857/S0320972520100061
34. Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, et al. Tissue damage from neutrophilinduced oxidative stress in COVID-19. Nat Rev Immunol. 2020; 20(9): 515-516. doi: 10.1038/s41577-020-0407-1
35. Martinod K, Wagner DD. Thrombosis: Tangled up in NETs. Blood. 2014; 123(18): 2768-2776. doi: 10.1182/blood-2013-10-463646
36. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010; 107: 15880-15885. doi: 10.1073/pnas.1005743107
37. Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012; 10(1): 136-144. doi: 10.1111/j.1538-7836.2011.04544.x
38. Mulay SR, Anders HJ. Neutrophils and neutrophil extracellular traps regulate immune responses in health and disease. Cells. 2020; 9: 2130. doi: 10.3390/cells9092130
39. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020; 77: 100741. doi: 10.1016/j.jbior.2020.100741
40. Yaqinuddin A, Kashir J. Novel therapeutic targets for SARSCoV-2-induced acute lung injury: Targeting a potential IL1β/neutrophil extracellular traps feedback loop. Med Hypotheses. 2020; 143: 109906. doi: 10.1016/j.mehy.2020.109906
41. Yaqinuddin A, Kvietys P, Kashir J. COVID-19: Role of neutrophil extracellular traps in acute lung injury. Respir Investig. 2020; 58: 419-420. doi: 10.1016/j.resinv.2020.06.001
42. Allegra A, Innao V, Allegra AG, Musolino C. Coagulopathy and thromboembolic events in patients with SARS-CoV-2 infection: Pathogenesis and management strategies. Ann Hematol. 2020; 99: 1953-1965. doi: 10.1007/s00277-020-04182-4
43. Price LC, McCabe C, Garfield B, Wort SJ. Thrombosis and COVID-19 pneumonia: The clot thickens! Eur Respir J. 2020; 56: 2001608. doi: 10.1183/13993003.01608-2020
44. Pujhari S, Paul S, Ahluwalia J, Rasgon JL. Clotting disorder in severe acute respiratory syndrome coronavirus 2. Rev Med Virol. 2021; 31(3): e2177. doi: 10.1002/rmv.2177
45. Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, et al. Insights into immunothrombosis: The interplay among neutrophil extracellular trap, von Willebrand factor, and ADAMTS13. Front Immunol. 2020; 11: 610696. doi: 10.3389/fimmu.2020.610696
46. Biswas S, Thakur V, Kaur P, Khan A, Kulshrestha S, Kumar P. Blood clots in COVID-19 patients: Simplifying the curious mystery. Med Hypotheses. 2021; 146: 110371. doi: 10.1016/j.mehy.2020.110371
47. Leppkes M, Knopf J, Naschberger E, Lindemann A, Singh J, Herrmann I, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020; 58: 102925. doi: 10.1016/j.ebiom.2020.102925
48. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020; 5: e138999. doi: 10.1172/jci.insight.138999
49. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008; 133(2): 235-249. doi: 10.1016/j.cell.2008.02.043
50. Thierry AR, Roch B. Neutrophil extracellular traps and byproducts play a key role in COVID-19: Pathogenesis, risk factors, and therapy. J Clin Med. 2020; 9: 2942. doi: 10.3390/jcm9092942
51. Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017; 120: 736-743. doi: 10.1161/CIRCRESAHA.116.309692
52. Knight JS, Luo W, O’Dell AA, Yalavarthi S, Zhao W, Subramanian V, et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res. 2014; 114(6): 947-956. doi: 10.1161/CIRCRESAHA.114.303312
53. Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine. 2020; 133: 155151. doi: 10.1016/j.cyto.2020.155151
54. Dabrowska D, Jabłońska E, Garley M, Sawicka-Powierza J, Nowak K. The phenomenon of neutrophil extracellular traps in vascular diseases. Arch Immunol Ther Exp. 2018; 66(4): 273-281. doi: 10.1007/s00005-018-0505-y
55. Amelina EL, Kashirskaya NYu, Shmarina GV, Krasovskiy SA, Kudlay DA, Markova OA, et al. Dornase alfa in the treatment of COVID-19: Destruction of neutrophil extracellular traps. Pulmonologiya. 2020; 30(3): 344-349. (In Russ.). doi: 10.18093/0869-0189-2020-30-3-344-349
56. Amelina EL, Krasovskiy SA, Abdulganieva DI, Asherova IK, Zilber IE, Trishina SV, et al. Efficacy and safety of the biosimilar medicinal product Tigerase® (dornase alfa) in long-term symptomatic treatment of patients with cystic fibrosis: Results of a phase iii clinical trial. Pulmonologiya. 2019; 29(6): 695-706. (In Russ.). doi: 10.18093/0869-0189-2019-29-6-695-706
57. Chiang CC, Korinek M, Cheng WJ, Hwang TL. Targeting neutrophils to treat acute respiratory distress syndrome in Coronavirus disease. Front Pharmacol. 2020; 11: 572009. doi: 10.3389/fphar.2020.572009
58. Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and neutrophils: The relationship between hyperinflammation and neutrophil extracellular traps. Mediat Inflamm. 2020; 2020: 8829674. doi: 10.1155/2020/8829674
59. Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): Two potential targets for COVID-19 treatment. Mediators Inflamm. 2020; 2020: 7527953. doi: 10.1155/2020/7527953
60. Chen X, Guo H, Qiu L, Zhang C, Deng Q, Leng Q. Immunomodulatory and antiviral activity of metformin and its potential implications in treating coronavirus disease 2019 and lung injury. Front Immunol. 2020; 11: 2056. doi: 10.3389/fimmu.2020.02056
61. Street ME. HMGB1: A possible crucial therapeutic target for COVID-19? Horm Res Paediatr. 2020; 93: 73-75. doi: 10.1159/000508291
Review
For citations:
Aitbaev K.A., Murkamilov I.T., Fomin V.V., Kudaibergenova I.O., Yusupov F.A. Coronavirus disease 2019 (COVID-19): NETosis-associated mechanisms of progression and prospects for therapy regulating the formation of neutrophil extracellular traps (NETs). Acta Biomedica Scientifica. 2021;6(4):64-73. (In Russ.) https://doi.org/10.29413/ABS.2021-6.4.6