Genetic basis of anthracyclines cardiotoxicity: Literature review
https://doi.org/10.29413/ABS.2021-6.4.3
Abstract
The purpose of this review was to systematize data on molecular genetic markers of increased risk of cardiotoxic effects, as well as to search for risk and protective variants of candidate genes. Today, the therapy of malignant neoplasms is based on the use of anthracyclines – drugs of the cytostatic mechanism of action. Along with their effectiveness, these drugs can have a cardiotoxic effect on cardiomyocytes by increasing the amount of reactive oxygen species and disrupting mitochondrial biogenesis. Pathological disorders lead to an increased risk of myocardial dysfunction and a number of other cardiovascular pathologies in patients receiving chemotherapy using anthracyclines. The cardiotoxic effect of anthracyclines leads to cardiomyopathy, heart failure, myocardial infarction, and thrombosis. Early detection of cardiotoxic damage leads to reducing the negative effects of these drugs due to changes in chemotherapy tactics. It is known that the risk of cardiotoxic myocardial damage is genetically determined and controlled by more than 80 genes. In this review, the description of basic molecules such as ATP-binding cassette transporters and solute carrier family (SLC transporters), carbonyl reductase, molecules of antioxidant defense, xenobiotic and iron metabolism was performed. In addition, a special attention is paid to the study of epigenetic and post-translational regulation. The available data are characterized by some inconsistency that may be explained by the ethnic differences of the studied populations. Thus, a more detailed research of various ethnic groups, gene-gene interactions between potential candidate genes and epigenetic regulation is necessary. Thus, understanding the contribution of genetic polymorphism to the development of cardiotoxicity will help to assess the individual risks of cardiovascular pathology in patients with various types of cancer, as well as reduce the risk of myocardial damage by developing individual preventive measures and correcting chemotherapy.
About the Authors
M. Yu. SinitskyRussian Federation
Cand. Sc. (Biol.), Senior Researcher at the Laboratory of Genomic Medicine
Sosnoviy blvd 6, 650002, Kemerovo, Russian Federation
A. V. Tsepokina
Russian Federation
Junior Research Officer at the Laboratory of Genomic Medicine
Sosnoviy blvd 6, 650002, Kemerovo, Russian Federation
M. V. Khutornaya
Russian Federation
Junior Research Officer at the Laboratory of Genomic Medicine
Sosnoviy blvd 6, 650002, Kemerovo, Russian Federation
A. V. Ponasenko
Russian Federation
Cand. Sc. (Med.), Head of the Laboratory Genomic Medicine
Sosnoviy blvd 6, 650002, Kemerovo, Russian Federation
A. N. Sumin
Russian Federation
Dr. Sc. (Med.), Head of the Laboratory of Comorbidity in Cardiovascular Diseases
Sosnoviy blvd 6, 650002, Kemerovo, Russian Federation
References
1. BD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159):1736-1788. doi: 10.1016/S0140-6736(18)32203-7
2. Narezkina A, Khoban N. Anthracycline cardiotoxicity. One Step Closer to Reversing the Irreversible. Circulation: Heart Failure. 2019; e005910
3. Chaulin AM, Duplyakov DV. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases. 2020; 9(3): 69-80. (In Russ.). doi: 10.17802/2306-1278-2020-9-3-69-80
4. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005; 23(30): 7685-7696. doi: 10.1200/JCO.2005.08.789
5. Chung WB, Youn HJ. Pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Korean J Intern Med. 2016; 31(4): 625-633. doi: 10.3904/kjim.2016.017
6. Goyal V, Bews H, Cheung D, Premecz S, Mandal S, Shaikh B, et al. The cardioprotective role of N-acetyl cysteine amide in the prevention of doxorubicin and trastuzumab-mediated cardiac dysfunction. Can J Cardiol. 2016; 32(12): 1513-1519. doi: 10.1016/j.cjca.2016.06.002
7. Liu D, Ma Z, Di S, Yang Y, Yang J, Xu L, et al. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med. 2018; 129: 59-72. doi: 10.1016/j.freeradbiomed.2018.08.032
8. Ni C, Ma P, Wang R, Lou X, Liu X, Qin Y, et al. Doxorubicininduced cardiotoxicity involves IFNγ-mediated metabolic reprogramming in cardiomyocytes. J Pathol. 2019; 247(3): 320-332. doi: 10.1002/path.5192
9. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017; 31(1): 63-75. doi: 10.1007/s10557-016-6711-0
10. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012; 18(11): 1639-1642. doi: 10.1038/nm.2919
11. Hahn VS, Lenihan DJ, Ky B. Cancer therapy-induced cardiotoxicity: Basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014; 3(2): e000665. doi: 10.1161/JAHA.113.000665
12. Wadugu B, Kühn B. The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. Am J Physiol Heart Circ Physiol. 2012; 302(11): H2139-H2147. doi: 10.1152/ajpheart.00063.2012
13. Suter TM, Ewer MS. Cancer drugs and the heart: Importance and management. Eur Heart J. 2013; 34(15): 1102-1111. doi: 10.1093/eurheartj/ehs181
14. Von Hoff DD, Layard MW, Basa P, Davis HL, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979; 91(5): 710-717. doi: 10.7326/0003-4819-91-5-710
15. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010; 55(3): 213-220. doi: 10.1016/j.jacc.2009.03.095
16. Seliverstova DV, Evsina OV. Cardiotoxicity of chemotherapy. Russian Heart Journal. 2016; 15(1): 50-57. (In Russ.)
17. Tan TC, Scherrer-Crosbie M. Cardiac complications of chemotherapy: Role of imaging. Curr Treat Options Cardiovasc Med. 2014; 16(4): 296. doi: 10.1007/s11936-014-0296-3
18. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012; 23(7): vii155-vii166.
19. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. Position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016; 37(36): 2768-2801. doi: 10.1093/eurheartj/ehw211
20. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, and branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005; 18(12): 1440-1463. doi: 10.1016/j.echo.2005.10.005
21. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002; 20(5): 1215-1221. doi: 10.1200/JCO.2002.20.5.1215
22. Tan-Chiu E, Yothers G, Romond E, Geyer Jr CE, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in nodepositive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005; 23(31): 7811-7819. doi: 10.1200/JCO.2005.02.4091
23. Deng S, Wojnowski L. Genotyping the risk of anthracycline-induced cardiotoxicity. Cardiovasc Toxicol. 2007; 7(2): 129-134. doi: 10.1007/s12012-007-0024-2
24. Leong SL, Chaiyakunapruk N, Lee SW. Candidate gene association studies of anthracycline-induced cardiotoxicity: A systematic review and meta-analysis. Sci Rep. 2017; 7(1): 39. doi: 10.1038/s41598-017-00075-1
25. Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y, Lee JW, et al. Canadian Pharmacogenomics Network for Drug Safety Consortium. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015; 47(9): 1079-1084. doi: 10.1038/ng.3374
26. Park B, Sim SH, Lee KS, Kim HJ, Park IH. Genome-wide association study of genetic variants related to anthracyclineinduced cardiotoxicity in early breast cancer. Cancer Sci. 2020; 111(7): 2579-2587. doi: 10.1111/cas.14446
27. Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther. 2006; 112(2): 457-473. doi: 10.1016/j.pharmthera.2006.04.009
28. Zhai X, Wang H, Zhu X, Miao H, Qian X, Li J, et al. Gene polymorphisms of ABC transporters are associated with clinical outcomes in children with acute lymphoblastic leukemia. Arch Med Sci. 2012; 8(4): 659-671. doi: 10.5114/aoms.2012.30290
29. Ansari M, Sauty G, Labuda M, Gagne V, Rousseau J, Moghrabi A, et al. Polymorphism in multidrug resistance associated protein gene 3 is associated with outcomes in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2012; 12(5): 386-394. doi: 10.1038/tpj.2011.17
30. Vulsteke C, Pfeil AM, Maggen C, Schwenkglenks M, Pettengell R, Szucs TD, et al. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res Treat. 2015; 152(1): 67-76. doi: 10.1007/s10549-015-3437-9
31. Visscher H, Ross CJ, Rassekh SR, Sandro GS, Caron HN, van Dalen EC, et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer. 2013; 60(8): 1375-1381. doi: 10.1002/pbc.24505
32. Hertz DL, Caram MV, Kidwell KM, Thibert JN, Gersch C, Seewald NJ, et al. Evidence for association of SNPs in ABCB1 and CBR3, but not RAC2, NCF4, SLC28A3 or TOP2B, with chronic cardiotoxicity in a cohort of breast cancer patients treated with anthracyclines. Pharmacogenomics. 2016; 17(3): 231-240. doi: 10.2217/pgs.15.162
33. Reichwagen A, Ziepert M, Kreuz M, Gödtel-Armbrust U, Rixecker T, Poeschel V, et al. Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20(+) B-cell lymphoma. Pharmacogenomics. 2015; 16(4): 361-372. doi: 10.2217/pgs.14.179
34. Leong SL, Chaiyakunapruk N, Lee SW. Candidate gene association studies of anthracycline-induced cardiotoxicity: A systematic review and meta-analysis. Sci Rep. 2017; 7(1): 39. doi: 10.1038/s41598-017-00075-1
35. Menna P, Recalcati S, Cairo G, Minotti G. An introduction to the metabolic determinants of anthracycline cardiotoxicity. Cardiovasc. Toxicol. 2007; 7(2): 80-85. doi: 10.1007/s12012-007-0011-7
36. Olson LE, Bedja D, Alvey SJ, Cardounel AJ, Gabrielson KL, Reeves RH. Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res. 2003; 63(20): 6602-6606
37. Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM, Kawashima TI, Davies SM, Relling MV, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer. 2008; 112(12): 2789-2795. doi: 10.1002/cncr.23534
38. Sági JC, Kutszegi N, Kelemen A, Fodor LE, Gézsi A, Kovács GT, et al. Pharmacogenetics of anthracyclines. Pharmacogenomics. 2016; 17(9): 1075-1087. doi: 10.2217/pgs-2016-0036
39. Cascales A, Pastor-Quirante F, Sánchez-Vega B, LuengoGil G, Corral J, Ortuño-Pacheco G, et al. Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist. 2013; 18(4): 446-453. doi: 10.1634/theoncologist.2012-0239
40. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013; 119(19): 3555-3562. doi: 10.1002/cncr.28256
41. Armenian SH, Ding Y, Mills G, Sun C, Venkataraman K, Wong FL, et al. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br J Haematol. 2013; 163(2): 205-213. doi: 10.1111/bjh.12516
42. Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dubé MP, Al-Saloos H, et al. Pharmacogenomic prediction of anthracyclineinduced cardiotoxicity in children. J Clin Oncol. 2012; 30(13): 1422-1428. doi: 10.1200/JCO.2010.34.3467
43. Wojnowski L, Kulle B, Schirmer M, Schlüter G, Schmidt A, Rosenberger A, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicininduced cardiotoxicity. Circulation. 2005; 112(24): 3754-3762.
44. Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015; 14(8): 543-560. doi: 10.1038/nrd4626
45. Visscher H, Rassekh SR, Sandor GS, Caron HN, van Dalen EC, Kremer LC, et al. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics. 2015; 16(10): 1-12. doi: 10.2217/pgs.15.61
46. Kwok JC, Richardson DR. Unexpected anthracycline-mediated alterations in iron-regulatory protein-RNA-binding activity: The iron and copper complexes of anthracyclines decrease RNAbinding activity. Molecular Pharmacology. 2002; 62(4): 888-900. doi: 10.1124/mol.62.4.888
47. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2014; 119(19): 3555-3562. doi: 10.1002/cncr.28256
48. Vaitiekus D, Muckiene G, Vaitiekiene A, Sereikaite L, Inciuraite R, Insodaite R, et al. HFE gene variants’ impact on anthracycline-based chemotherapy-induced subclinical cardiotoxicity. Cardiovasc Toxicol. 2021; 21(1): 59-66. doi: 10.1007/s12012-020-09595-1
49. Isubakova DS, Tsymbal OS, Bronikovskaya EV, Litviakov NV, Milto IV, Takhauov RM. Determination of the degree of methylation of apoptosis gene promoters in blood lymphocytes of workers exposed to long-term external irradiation in the course of professional activity. Bulletin of Experimental Biology and Medicine. 2021; 171(3): 339-343. (In Russ)
50. Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nature Reviews Genetics. 2012; 13(7): 484-492. doi: 10.1038/nrg3230
51. Nafee TM, Farrell WE, Carroll WD, Fryer AA, Ismail KMK. Epigenetic control of fetal gene expression. BJOG. 2008; 115(2): 158-168. doi: 10.1111/j.1471-0528.2007.01528.x
52. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021; 139: 111708. doi: 10.1016/j.biopha.2021.111708
53. Hsu PC, Kadlubar SA, Siegel ER, Rogers LJ, Todorova VK, Su LJ, Makhoul I. Genome-wide DNA methylation signatures to predict pathologic complete response from combined neoadjuvant chemotherapy with bevacizumab in breast cancer. PloS One. 2020; 15(4): e0230248. doi: 10.1371/journal.pone.0230248
54. Rotini A, Martinez-Sarra E, Pozzo E, Sarripaolesi M. Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacol Res. 2018; 157: 58-66. doi: 10.1016/j.phrs.2017.05.029
55. Min PK, Chan SY. The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Investig. 2018; 45(8): 860-874. doi: 10.1111/eci.12475
56. Krauskopf J, Verheijen M, Kleinjans JC, de Kok TM, Caiment F. Development and regulatory application of microRNA biomarkers. Biomark Med. 2015; 9(11): 1137-1151. doi: 10.2217/bmm.15.50
57. Pereira JD, Tosatti JAG, Simões R, Luizon MR, Gomes KB, Alves MT. MicroRNAs associated to anthracycline-induced cardiotoxicity in women with breast cancer: A systematic review and pathway analysis. Biomed Pharmacother. 2020; 131: 110709. doi: 10.1016/j.biopha.2020.110709
58. miRTarBase, database portal. URL: https://bio.tools/mirtarbase [Дата доступа: 01.07.2021].
59. Desai V, Kwekel J, Vijay V, Moland C, Herman E, Lee T, et al. Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol Appl Pharmacol. 2014; 281: 221-229. doi: 10.1016/j.taap.2014.10.006
60. Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, et al. MicroRNA- 140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 2018; 15: 284-296. doi: 10.1016/j.redox.2017.12.013
61. Zhu Z, Li X, Dong H, Ke S, Zheng WH. Let-7f and miRNA-126 correlate with reduced cardiotoxicity risk in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy. Int J Clin Exp Pathol. 2018; 11(10): 4987-4995.
62. Fu J, Peng C, Wang W, Jin H, Tang Q, Wei X. Let-7 g is involved in doxorubicin induced myocardial injury. Environ Toxicol Pharmacol. 2012; 33(2): 312-317. doi: 10.1016/j.etap.2011.12.023
Review
For citations:
Sinitsky M.Yu., Tsepokina A.V., Khutornaya M.V., Ponasenko A.V., Sumin A.N. Genetic basis of anthracyclines cardiotoxicity: Literature review. Acta Biomedica Scientifica. 2021;6(4):27-38. (In Russ.) https://doi.org/10.29413/ABS.2021-6.4.3