Preview

Acta Biomedica Scientifica

Advanced search

Intensity of free radical processes in rats’ blood while deep hypothermia and self-warming

https://doi.org/10.12737/23402

Abstract

Hypothermic conditions of homoisothermic organisms are characterized by the activation of free-radical processes in tissues. The intensity of these processes occurring at hypothermia is less well understood. The essential increase in heart rate, breathing, blood flow velocity, and metabolic processes during warming must stimulate the generation of reactive oxygen species and oxidative modification of biomolecules. We study the levels of peroxidation markers of lipids (by malondialdehyde) and proteins (by carbonyl groups) in blood plasma and erythrocytes as well as the activity of erythrocyte antioxidant enzymes of rats after deep hypothermia (the temperature in the rectum was 20 °C) and self-warming dynamics. A maximum warming rate (0.0160C/min) was revealed over the body temperature range of 22-33 °С, below and above these temperatures a warming rate was essentially lower. The warming of rats resulted in a total protein content reduction which negatively correlates (r = -0.967; р < 0.05) with a middle molecular peptide level. The deep hypothermia decreased the intensity of oxidative modification of lipid and proteins in blood plasma and red blood cell membranes, and the activity of red blood cell superoxide dismutase (SOD). Maximum amount of products of oxidative modification of lipids and proteins in plasma and erythrocytes membranes caused by rats' self-warming was observed at body temperature of 30-35 °С. After a complete rats' warming the intensity of oxidative modification of lipids and proteins in plasma and erythrocyte membranes decreased. The activity of SOD and catalase of erythrocyte substantially increased when body temperature reached 35 °С. The obtained data indicate that during self-warming at the body temperature of 30-35 °С the oxidative stress appears in blood which requires the use of antioxidant defense.

About the Authors

N. K. Klichkhanov
Dagestan State University
Russian Federation


Z. G. Ismailova
Dagestan State University
Russian Federation


M. D. Astaeva
Dagestan State University
Russian Federation


References

1. Андреева Л.И., Кожемякин А.А., Кишкун А.А. Модификация метода определения перекисей липидов в тесте с тиобарбитуровой кислотой // Лаб. дело. - 1988. - № 11. - С. 41-43

2. Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н. Методы оценки свободнорадикального окисления и антиоксидантной системы организма. Методические рекомендации. - СПб.: ИКФ «Фолиант», 2000. - 104

3. Ермаков А.В. Диагностические возможности использования метода определения уровня среднемолекулярных соединений в практической медицине // Проблемы экспертизы в медицине. - 2005. - Т. 5, № 17. - С. 27-29

4. Королюк М.А., Иванова Л.И., Майорова И.Г., Токарев В.Е. Метод определения активности каталазы // Лаб. дело. - 1988. - № 1. - С. 16-19

5. Овсянников С.Е., Никитченко Ю.В., Мазалов В.К., Луговой В.И. Перекисное окисление липидов в динамике самоотогрева после острого охлаждения организма крыс // Проблемы криобиологии. - 1996. -№ 1. - С. 37-41

6. Орлов Ю.П. Внутрисосудистый гемолиз эритроцитов в развитии органных дисфункций при критических состояниях // Общая реаниматология. -2008. - Т. IV, № 2. - С. 88-93

7. Осипович В.К., Тупикова З.А., Маркелов И.М. Сравнительная оценка экспресс-методов определения средних молекул // Лаб. дело. - 1987. - № 3. -С. 221-223

8. Ткаченко С.И., Козлова В.Ф., Козлов А.В. Влияние общего охлаждения на некоторые показатели морфофункционального состояния организма // Патофизиол. аспекты действия холода на организм. - Харьков, 1989. - С. 140-147

9. Эмирбеков Э.З., Кличханов Н.К. Свободнорадикальные процессы и состояние мембран при гипотермии. - Ростов-на-Дону, 2011. - 200 с

10. Alva N., Palomeque J., Teresa C. (2013). Oxidative stress and antioxidant activity in hypothermia and rewarming: can RONS modulate the beneficial effects of therapeutic hypothermia? Oxidative Medicine and Cellular Longevity. Available at: http://dx.doi.org/10.1155/2013/957054.

11. Bailey S.R., Mitra S., Flavahan S., Flavahan N.A. (2005). Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., (289), H243-H250.

12. Brown D.J., Brugger H., Boyd J. (2012). Accidental hypothermia. N. Engl. J. Med., (367), 1930-1938.

13. De Beus M.D., Chung J., Colon W. (2004). Modification of cysteine 111 in Cu/Zn superoxide dismutase in altered spectroscopic and biophysical properties. Protein Sci., (13), 1347-1355.

14. Kondratiev T.V., Flemming K., Myhre E.S.P., Sovershaev M.A., Tveita T. (2006). Is oxygen supply a limiting factor for survival during rewarming from profound hypothermia? Am. J. Physiol. Heart Circ. Physiol., (291), H441-H450.

15. Polderman K.H. (2009). Mechanisms of action, physiological effects, and complications of hypothermia. Crit. Care Med., 37 (7), S186-S202.


Review

For citations:


Klichkhanov N.K., Ismailova Z.G., Astaeva M.D. Intensity of free radical processes in rats’ blood while deep hypothermia and self-warming. Acta Biomedica Scientifica. 2016;1(5):104-109. (In Russ.) https://doi.org/10.12737/23402

Views: 701


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)