Preview

Acta Biomedica Scientifica

Advanced search

Activity of Lipoperoxidation – Antioxidant Protection Reactions in Patients with HIV Infection (Review)

https://doi.org/10.29413/ABS.2020-5.6.14

Abstract

Changes in the activity of the lipid peroxidation – the antioxidant defense system is an important metabolic  characteristic in various diseases, including infection with the human immunodeficiency virus. The high  medical, social and economic significance of HIV infection is determined by the widespread and severe course of the disease. Up to 2.7 million new infections are registered in the world every year. The increase in the  prevalence of HIV infection in the Russian Federation is largely due to the prevalence of sexual transmission (50.3 %). In recent years, the proportion of women of reproductive age who are infected with HIV has significantly increased, which entails the problem of an increase in the number of cases of HIV transmission from mother to child during pregnancy and childbirth.
According to a number of authors, it was found that in patients with HIV infection there is an intensification of the processes of lipid peroxidation, against the background of depletion of the activity of the antioxidant defense system. The presence of co-infections in the human immunodeficiency virus, concomitant diseases and other negative factors can aggravate the course of this kind of reactions.
The article presents a review and analysis of recent literature data on studies of the features of changes in free radical oxidation indicators in HIV infection. The study of LPO–AOD processes in HIV infection is necessary and can act as a new approach in the prevention of complications and treatment of this disease.
When writing the review, the database of the scientific electronic library (eLibrary.Ru) was used, the keywords were HIV, lipid peroxidation, lipid peroxidation, free radical oxidation, antioxidant protection; filters: publication years 2010–2020, publications with full text, publications available for viewing; An English-language database of medical
and biological publications created by the NCBI, keywords: HIV, lipid  peroxidation, antioxidant protection, antioxidants, oxidative stress, human immunodeficiency virus.

About the Author

O. A. Nikitina
Scientific Centre for Family Health and Human Reproduction Problems
Russian Federation

Cand. Sc. (Biol.), Junior Research Officer at the Laboratory of Pathophysiology

Timiryazeva str. 16, Irkutsk 664003, Russian Federation




References

1. Zenkov NK, Kozhin PM, Chechushkov AV, Kandalintseva NV, Martinovich GG, Menshchikova EB. Oxidative stress in aging. Uspekhi gerontologii. 2020; 33(1): 10-22. doi: 10.34922/AE.2020.33.1.001. (In Russ.)

2. Kostyushov VV, Bokal II. The role of the thiol disulfide system in the mechanism of oxidative stress and distress in HIV infection. Biomeditsinskaya khimiya. 2010; 56(2): 290-298. (In Russ.)

3. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Timofeeva E, Leshchenko OYa, et al. Lipid peroxidation parameters and antioxidant defense in women with HIV-mono and HIV-coinfection. FEBS Journal. 2016; 283(S1): 383-384.

4. Mebrat Y, Amogne W, Mekasha A, Gleason RL, Seifu D. Lipid peroxidation and altered antioxidant profiles with pediatric HIV infection and antiretroviral therapy in Addis Ababa, Ethiopia. J Trop Pediatr. 2017; 63(3): 196-202. doi: 10.1093/tropej/fmw076

5. Grivennikova VG, Vinogradov AD. Mitochondrial production of reactive oxygen species. Biochemistry (Moscow). 2013; 78(13): 1490-1511. doi: 10.1134/S0006297913130087

6. Rosenfeld MA, Leonova VB, Shchegolikhin AN, Razumovskii SD, Konstantinova ML, Bychkova AV, et al. Oxidized modification of fragments D and E from fibrinogen induced by ozone. Biochemistry (Moscow). 2010; 75(10): 1285-1293. doi: 10.1134/S0006297910100111

7. Novo E, Busletta C, Valfre di Bonzo L, Povero D, Paternostro C, Mareschi K, et al. Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. J Hepatol. 2011; 54: 964-974. doi: 10.1016/j.jhep.2010.09.0.022

8. Jiang Z, Hu Z, Zeng L, Lu W, Zhang H, Li T, et al. The role of the Golgi apparatus in oxidative stress: Is this organelle less significant than mitochondria? Free Radic Biol Med. 2011; 50: 907-917. doi: 10.1016/j.freeradbiomed.2011.01.011

9. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009; 47: 333-343. doi: 10.1016/j.freeradbiomed.2009.05.004

10. Andreyev AY, Murphy AN, Kushnareva YE, Starkov AA. Mitochondrial ROS metabolism: 10 years later (review). Biochemistry (Moscow). 2015; 80(5): 517-531. doi: 10.1134/S0006297915050028

11. Niki E. Lipid peroxidation: Physiological levels and dual biological effects. Free Radic Biol Med. 2009; 47: 469-484. doi: 10.1016/j.freeradbiomed.2009.05.0.032

12. Labas YuA, Gordeeva AV, Derjabina YuI, Derjabin AN, Isakova EP. The regulatory role of reactive oxygen species secretion: From bacteria to man. Uspekhi sovremennoy biologii. 2010; 130(4): 323-335. (In Russ.)

13. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010; 48(6): 749-762. doi: 10.1016/j.freeradbiomed.2009.12.022

14. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011; 50: 567-575. doi: 10.1016/j.freeradbiomed.2010.12.006

15. Gomez-Cabrera MC, Domenech E, Viсa J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic Med Biol. 2008; 44: 126-131. doi: 10.1016/j.freeradbiomed.2007.02.001

16. Miki H, Funato YJ. Regulation of intracellular signaling through cysteine oxidation by reactive oxygen species. Biochem. 2012; 151: 255-261. doi: 10.1093/jb/mvs006

17. Severin ES. Biochemistry. Moscow: GEOTAR-Media; 2003. (In Russ.)

18. Kolesnikova LI, Darenskaya MA, Kolesnikov SI. Free radical oxidation: A pathophysiologist’s view. Bulletin of Siberian Medicine. 2017; 16(4): 16-29. doi: 10.20538/1682-0363-2017-4-16-29. (In Russ.)

19. Okovityi SV. Clinical pharmacology of antioxidants. Farmindeks: Praktik. 2003; (5): 85-111. (In Russ.)

20. Volkenshtein MV. Biophysics. Moscow: Vysshaya shkola; 2010. (In Russ.)

21. Dumont M, Beal MF. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med. 2011; 51: 1014-1026. doi: 10.1016/j.freeradbiomed.2010.11.026

22. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012; 10: 49. doi: 10.1186/1477-7827-10-49

23. Semenova NV. Oxidative stress and menopause (review of literature). Acta biomedica scientifica. 2014; (2): 120-125. (In Russ.)

24. Pokrovskaya AV, Yumaguzin VV, Kireev DE, Vinnik MV, Pokrovskij VV. The impact of migration on HIV infection situation (analytical review). Annals of the Russian Academy of Medical Sciences. 2019; 74(2): 88-97. doi: 10.15690/vramn1106. (In Russ.)

25. Federal Scientific and Methodological Center for the Prevention and Control of AIDS. Information on HIV infection in Russia. URL: http://www.hivrussia.info/dannye-po-vich-infektsii-v-rossii/ (In Russ.)

26. Pokrovsky VV, Ladnaia NN, Pokrovskaya AV. HIV/AIDS reduces the number of Russians and their life expectancy. Demograficheskoe obozrenie. 2017; 4(1): 65-82. (In Russ.)

27. Kolesnikova LI, Darenskaya MA, Dolgikh VV, Shenin VA, Dutova SV, Grebenkina LA, еt al. Pro- and antioxidatic status at teenagers – Tofs and Europoid. Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2010; 12(1-7): 1687-1691. (In Russ.)

28. Kolesnikova LI, Darenskaya MA, Rashidova MA, Sholohov LF, Grebenkina LA, Leshhenko OYa, et al. Assessment of indicators of oxidative stress in women with HIV mono- and coinfection. Infektsionnye bolezni. 2016; 14(S1): 138. (In Russ.)

29. Andany N, Loutfy MR. HIV protease inhibitors in pregnancy: pharmacology and clinical use. Drugs. 2013; 73(3): 229-247. doi: 10.1007/s40265-013-0017-3

30. Kanestri VG, Kravchenko AV, Kushakova TE, Chukaeva II. Metabolic disorders in HIV-infected patients receiving antiretroviral therapy. Infektsionnye bolezni. 2014; 12(4): 5-10. (In Russ.)

31. Williams AA, Sitole LJ, Meyer D. HIV/HAART-associated oxidative stress is detectable by metabonomics. Mol Biosyst. 2017; 24; 13(11): 2202-2217. doi: 10.1039/c7mb00336f

32. Amjad SV, Davoodi P, Goodarzi MT, Abdolsamadi H, Poorolajal J, Parsa S, et al. Salivary antioxidant and oxidative stress marker levels in HIV-positive individuals. Comb Chem High Throughput Screen. 2019; 22(1): 59-64. doi: 10.2174/1386207322666190306144629

33. Sitole LJ, Tugizimana F, Meyer D. Multi-platform metabonomics unravel amino acids as markers of HIV/combination antiretroviral therapy-induced oxidative stress. J Pharm Biomed Anal. 2019; 176: 112796. doi: 10.1016/j.jpba.2019.112796

34. Kostyushov VV, Bokal II, Petrov SA. Study of activity of enzymes of antioxidant system of blood at HIV infection. Biomeditsinskaya khimiya. 2010; 56(5): 596-601. doi: 10.18097/pbmc20105605596 (In Russ.)

35. Belenichev IF, Yasinskiy RN, Lytvynenko ES. The changes of oxidative status markers in patients with newly diagnosed HIV/AIDS-associated lung›s tuberculosis after the course of treatment. Vestnik novykh meditsinskikh tekhnologii. 2014; 21(3): 135-138. (In Russ.)

36. Genich EV, Leshenko OYa, Darenskaya MA, Sholokhov LF. Neuroendocrine regulation and ovarian reserve in HIV-infected women with reproductive disorders. Acta biomedica scientifica. 2018; 3(3): 116-120. doi: 10.29413/ABS.2018-3.3.18 (In Russ.)

37. Kolesnikova LI, Darenskaya MA, Kolesnikov SI, Grebenkina LA, Rashidova MA, Timofeeva EV, et al. Evaluation of lipid peroxidation processes in patients with chronic parenteral viral hepatitis and HIV co-infection depending on degree of inflammatory process activity in the liver. Terapevticheskii arhiv. 2018; 90(11): 37-43. doi: 10.26442/terarkh201890114 (In Russ.)

38. Kolesnikova LI, Rashidova MA, Darenskaja MA, Sholohov LF, Grebenkina LA, Timofeeva EV, et al. Activity of lipid peroxidation reactions in women with HIV infection. Zhurnal infektologii. 2016; 8(S2): 56-57. (In Russ.)

39. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Timofeeva EV, Leshenko OYa, et al. Evaluation of the pro- and antioxidant status of women with HIV or coinfection. Terapevticheskii arkhiv. 2016; 88(11): 17-21. doi: 10.17116/terarkh2016881117-21 (In Russ.)

40. Awodele O, Olayemi SO, Nwite JA, Adeyemo TA. Investigation of the levels of oxidative stress parameters in HIV and HIVTB co-infected patients. J Infect Dev Ctries. 2012; 6(1): 79-85. doi: 10.3855/jidc.1906

41. Hernández S, Catalán-García M, Morén C, García-Otero L, López M, Guitart-Mampel M, et al. Placental mitochondrial toxicity, oxidative stress, apoptosis, and adverse perinatal outcomes in HIV pregnancies under antiretroviral treatment containing zidovudine. J Acquir Immune Defic Syndr. 2017; 75(4): e113-e119. doi: 10.1097/QAI.0000000000001334

42. Sabanchieva ZhKh. General antioxidant activity in patients with HIV infection. Advances in current natural sciences. 2007; (7): 62-63. (In Russ.)

43. Nagoev BS, Sabanchieva ZhKh. Lipid peroxidation and antioxidant systems in patients with HIV infection. Terapevticheskii arkhiv. 2007; 79(12): 70-73. (In Russ.)

44. Nagoev BS, Sabanchieva ZhKh. Lipid peroxidation and the state of antioxidant defense systems in patients with HIV-infection. Infektsionnye bolezni. 2007; 5(1): 33-35. (In Russ.)

45. Darenskaya MA, Genich EV, Grebenkina LA, Leshenko OYa, Kolesnikova LI, Kolesnikov SI. Lipid peroxidation status in women with HIV-infection and reproductive disorders. Free Radical Biology and Medicine. 2019; 139(S1): S43. doi: 10.1016/j.freeradbiomed.2019.05.021

46. Sabanchieva ZhKh. Clinical and prognostic value of assessing the functional and metabolic activity of leukocytes, average molecular peptides, the pro-antioxidant blood defense system in patients with HIV infection. Dissertation. Moscow: Central Research Institute of Epidemiology of the Ministry of Health of the Russian Federation; 2008. (In Russ.)

47. Nagoev BS, Sabanchieva ZhKh. Lipid peroxidation and the state of antioxidant activity in HIV infection against the background of viral hepatitis B and C. Doklady Adygskoj (Cherkesskoj) mezhdunarodnoj akademii nauk. 2005; 8(1): 118-122. (In Russ.)

48. Shatirko MA, Reshetniov IV, Golodnii SV, Mingazov ACh, Kozochkin DA, Izarovsky BV, Tseilikman VE, et al. Features of changes in the immunogram and indicators of free radical oxidation of blood plasma in HIV-infected heroin addicts. Kazanskij medicinskij zhurnal. 2015; 96(5): 772-775. doi: 10.17750/KMJ2015-772 (In Russ.)

49. Popoola TD, Awodele O. Interplay between antiretroviral therapy and oxidative stress in HIV seropositive patients. Afr J Med Med Sci. 2016; 45(1): 5-21.

50. Ceccherini-Silberstein F, Cozzi LA, Alteri C, Merlini E, Surdo M, Marchetti G, et al. Pre-ART HIV-1 DNA in CD4+ T cells correlates with baseline viro-immunological status and outcome in patients under first-line ART. J Antimicrob Chemother. 2018; 73(12): 3460-3470. doi: 10.1093/jac/dky350

51. Agosto LM, Henderson AJ. CD4(+) T cell subsets and pathways to HIV latency. AIDS Res Hum Retroviruses. 2018; 34(9): 780-789. doi: 10.1089/AID.2018.0105

52. Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, et al. HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med. 2018; 10(430): eaap9927. doi: 10.1126/scitranslmed.aap9927


Review

For citations:


Nikitina O.A. Activity of Lipoperoxidation – Antioxidant Protection Reactions in Patients with HIV Infection (Review). Acta Biomedica Scientifica. 2020;5(6):124-132. (In Russ.) https://doi.org/10.29413/ABS.2020-5.6.14

Views: 666


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)