Карбапенемазы как фактор устойчивости к антибактериальным препаратам
https://doi.org/10.29413/ABS.2020-5.6.11
Аннотация
Об авторе
А. В. НевежинаРоссия
младший научный сотрудник лаборатории клеточных технологий и регенеративной медицины
664003, г. Иркутск, ул. Борцов Революции, 1, Россия
Список литературы
1. Meletis G. Carbapenem resistance: Overview of the problem and future perspectives. Ther Adv Infect Dis. 2016; 3(1): 15-21. doi: 10.1177/2049936115621709
2. Codjoe FS, Donkor ES. Carbapenem resistance: A review. Med Sci (Basel). 2017; 6(1): 1. doi: 10.3390/medsci6010001
3. Dadgostar P. Antimicrobial resistance: Implications and costs. Infect Drug Resist. 2019; 12: 3903-3910. doi: 10.2147/IDR.S234610
4. Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. J Antimicrob Chemother. 2006; 57(3): 373-383. doi: 10.1093/jac/dki482
5. Hammoudi HD, Ayoub MC. The current burden of carbapenemases: Review of significant properties and dissemination among gram-negative bacteria. Antibiotics (Basel). 2020; 9(4): 186. doi: 10.3390/antibiotics9040186
6. Mangat CS, Vadlamani G, Holicek V, et al. Molecular basis for the potent inhibition of the emerging carbapenemase VCC-1 by avibactam. Antimicrob Agents Chemother. 2019; 63(4). doi: 10.1128/aac.02112-18
7. Roschanski N, Guenther S, Vu TTT, et al. VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016 [published correction appears in Euro Surveill. 2017 Nov;22(45):]. Euro Surveill. 2017; 22(43): 17-00032. doi: 10.2807/1560-7917.ES.2017.22.43.17-00032
8. Sugawara Y, Hagiya H, Akeda Y, et al. Dissemination of carbapenemase-producing Enterobacteriaceae harbouring bla NDM or blaIMI in local market foods of Yangon, Myanmar. Sci Rep. 2019; 9: 14455. doi: 10.1038/s41598-019-51002-5
9. Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: Epidemiology, detection and treatment options. Future Sci OA. 2020; 6: 3. doi: 10.2144/fsoa-2019-0098
10. Полищук А.Г., Якубович Е.И., Полухина О.В., Осовских В.В., Евтушенко В.И. Карбапенемаза- продуцирующие грамотрицательные бактерии в специализированном стационаре Санкт-Петербурга. Инфекция и иммунитет. 2017; 7(2): 181-192. doi: 10.15789/2220-7619-2017-2-181-192.
11. Jeon JH, Lee JH, Lee JJ, et al. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci. 2015; 16(5): 9654-9692. doi: 10.3390/ijms16059654
12. Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J intensive care. 2020; 8(13). doi: 10.1186/s40560-020-0429-6
13. Reyes JA, Melano R, Cardenas PA, Trueba G. Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales. Braz J Infect Dis. 2020; 24(3): 231-238. doi: 10.1016/j.bjid.2020.03.002
14. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018; 31(4): e00088-17. doi: 10.1128/CMR.00088-17
15. Diene SM, Rolain J-M. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014; 20(9): 831-838. doi: 10.1111/1469-0691.12655
16. Brouwer MSM, Tehrani KHME, Rapallini M, et al. Novel carbapenemases FLC-1 and IMI-2 encoded by an Enterobacter cloacae complex isolated from food products. Antimicrob Agents Chemother. 2019; 63(6): e02338-18. doi: 10.1128/AAC.02338-18
17. Aires-de-Sousa M, Ortiz de la Rosa J, Gonçalves M, Pereira A, Nordmann P, Poirel L. Epidemiology of carbapenemaseproducing Klebsiella pneumoniae in a hospital, Portugal. Emerg Infect Dis. 2019; 25(9): 1632-1638. doi: 10.3201/eid2509.190656
18. Piccirilli A, Mercuri PS, Galleni M, et al. P174E substitution in GES-1 and GES-5 β-lactamases improves catalytic efficiency toward carbapenems. Antimicrob Agents Chemother. 2018; 62(5): e01851-17. doi: 10.1128/AAC.01851-17
19. Chihi H, Bonnin RA, Bourouis A, Mahrouki S, Besbes S, Moussa MB, et al. GES-11-producing Acinetobacter baumannii clinical isolates from Tunisian hospitals: Long-term dissemination of GES-type carbapenemases in North Africa. J Glob Antimicrob Resist. 2016; 5: 47-50. doi: 10.1016/j.jgar.2016.03.005
20. Hopkins KL, Findlay J, Meunier D, Cummins M, Curtis S, Kustos I, et al. Serratia marcescens producing SME carbapenemases: An emerging resistance problem in the UK? J Antimicrob Chemother. 2017; 72(5): 1535-1537. doi: 10.1093/jac/dkw567
21. Iovene MR, Pota V, Galdiero M, et al. First Italian outbreak of VIM-producing Serratia marcescens in an adult polyvalent intensive care unit, August-October 2018: A case report and literature review. World J Clin Cases. 2019; 7(21): 3535-3548. doi: 10.12998/wjcc.v7.i21.3535
22. Sahuquillo-Arce JM, Hernandez-Cabezas A, Yarad-Auad F, Ibanez-Martínez E, Falomir-Salcedo P, Ruiz-Gaitán A. Carbapenemases: A worldwide threat to antimicrobial therapy. World J Pharmacol. 2015; 4(1): 75-95. doi: 10.5497/wjp.v4.i1.75
23. Liakopoulos A, Mevius D, Ceccarelli D. A review of SHV extended-spectrum β-lactamases: Neglected yet ubiquitous. Front Microbiol. 2016; 7: 1374. doi: 10.3389/fmicb.2016.01374
24. Naas T, Dortet L, Iorga BI. Structural and functional aspects of class A carbapenemases. Current Drug Targets. 2016; 17(9): 1006-1028. doi: 10.2174/1389450117666160310144501
25. Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: Detection and antimicrobial therapy. Front Microbiol. 2019; 10: 1823. doi: 10.3389/fmicb.2019.01823
26. Niu S, Chavda KD, Wei J, et al. A ceftazidime- avibactamresistant and carbapenem-susceptible Klebsiella pneumoniae strain harboring blaKPC-14 isolated in New York City. mSphere. 2020; 5(4): e00775-20. doi: 10.1128/mSphere.00775-20
27. Bonnin RA, Jousset AB, Urvoy N, Gauthier L, Tlili L,
28. Creton E, et al. Detection of GES-5 carbapenemase in Klebsiella pneumoniae, a newcomer in France. Antimicrob Agents Chemother. 2017; 61(3): e02263-16. doi: 10.1128/AAC.02263-16
29. Marsh JW, Mustapha MM, Griffith MP, Evans DR, Ezeonwuka C, Pasculle AW, et al. Evolution of outbreak- causing carbapenem-resistant Klebsiella pneumoniae ST258 at a tertiary care hospital over 8 years. MBio. 2019; 10(5): e01945-19. doi: 10.1128/mBio.01945-19
30. Duin D van, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017; 8(4): 460-469. doi: 10.1080/21505594.2016.1222343
31. Antonelli A, D›Andrea MM, Di Pilato V, et al. Characterization of a novel putative Xer-dependent integrative mobile element carrying the bla(NMC-A) carbapenemase gene, inserted into the chromosome of members of the Enterobacter cloacae complex. Antimicrob Agents Chemother. 2015; 59(10): 6620-6624. doi: 10.1128/aac.01452-15
32. Boyd DA, Mataseje LF, Davidson R, Delport JA, Fuller J, Hoang L, et al. Enterobacter cloacae complex isolates harboring bla NMC-A or blaIMI-type class A carbapenemase genes on novel chromosomal integrative elements and plasmids. Antimicrob Agents Chemother. 2017; 61(5): e02578-16. doi: 10.1128/AAC.02578-16
33. Hopkins KL, Findlay J, Doumith M, Mather B, Meunier D, D’Arcy S, et al. IMI-2 carbapenemase in a clinical Klebsiella variicola isolated in the UK. J Antimicrob Chemother. 2017; 72(7): 2129-2131. doi: 10.1093/jac/dkx103
34. Huang L, Wang X, Feng Y, Xie Y, Xie L, Zong Z. First identification of an IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae in China. Ann Clin Microbiol Antimicrob. 2015; 14: 51. doi: 10.1186/s12941-015-0112-2
35. Fonseca F, Sarmento AC, Henriques I, Samyn B, Beeumen J van, Domingues P, et al. Biochemical characterization of SFC-1, a class A carbapenem-hydrolyzing β-lactamase. Antimicrob Agents Chemother. 2007; 51(12): 4512-4514. doi: 10.1128/AAC.00491-07
36. Henriques I, Moura A, Alves A, Saavedra MJ, Correia A. Molecular characterization of a carbapenem-hydrolyzing class A β-lactamase, SFC-1, from Serratia fonticola UTAD54. Antimicrob Agents Chemother. 2004; 48(6): 2321-2324; doi: 10.1128/AAC.48.6.2321-2324.2004
37. Becka SA, Zeiser ET, Marshall SH, et al. Sequence heterogeneity of the PenA carbapenemase in clinical isolates of Burkholderia multivorans. Diagn Microbiol Infect Dis. 2018; 92(3): 253-258. doi: 10.1016/j.diagmicrobio.2018.06.005
38. Juan C, Torrens G, Gonzalez-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev. 2017; 41(6): 781-815. doi: 10.1093/femsre/fux043
39. Papp-Wallace KM., Scott AB, Zeiser ET, et al. Overcoming an extremely drug resistant (XDR) pathogen: Avibactam restores susceptibility to ceftazidime for Burkholderia cepacia complex isolates from cystic fibrosis patients. ACS Infect Dis. 2017; 3(7): 502-511. doi: 10.1021/acsinfecdis.7b00020
40. Nicoletti AG, Marcondes MFM, Martins WMBS, Almeida LGP, Nicolás MF, Vasconcelos ATR, et al. Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil. Antimicrob Agents Chemother. 2015; 59(9): 5159-5164.
41. doi: 10.1128/AAC.00158-15
42. Dortet L, Poirel L, Abbas S, Oueslati S, Nordmann P. Genetic and biochemical characterization of FRI-1, a carbapenemhydrolyzing class A β-lactamase from Enterobacter cloacae. Antimicrob Agents Chemother. 2015; 59(12): 7420-7425. doi: 10.1128/AAC.01636-15
43. Schauer J, Gatermann SG, Hoffmann D, Hupfeld L, Pfennigwerth N. GPC-1, a novel class A carbapenemase detected in a clinical Pseudomonas aeruginosa isolate. J Antimicrob Chemother. 2020; 75(4): 911-916. doi: 10.1093/jac/dkz536
44. Lv R, Guo J, Yan Y, et al. Characterization of a novel class A carbapenemase PAD-1 from Paramesorhizobium desertii A-3-ET, a strain highly resistant to β-lactam antibiotics. Sci Rep. 2017; 7: 8370. doi: 10.1038/s41598-017-07841-1
45. Tamma PD, Simner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol. 2018; 56(11): e01140-18. doi: 10.1128/JCM.01140-18
46. Mojica MF, Bonomo RA, Fast W. B1-metallo-β-lactamases: Where do we stand? Curr Drug Targets. 2016; 17(9): 1029-1050. doi: 10.2174/1389450116666151001105622
47. Mercuri PS, Bouillenne F, Boschi L, et al. Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli. Antimicrob Agents Chemother. 2001; 45(4): 1254-1262. doi: 10.1128/AAC.45.4.1254-1262.2001
48. Lowe CF, Matic N, Champagne S, Romney MG, Leung V, Ritchie G. The brief case: IMP, the uncommonly common carbapenemase. J Clin Microbiol. 2020; 58(4): e01094-19. doi: 10.1128/JCM.01094-19
49. Bonardi S, Pitino R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital J Food Saf. 2019; 8(2): 7956. doi: 10.4081/ijfs.2019.7956
50. Makena A, Duzgun AO, Brem J, McDonough MA, Rydzik AM, Abboud MI, et al. Comparison of Verona integron-Borne metallo-β-lactamase (VIM) variants reveals differences in stability and inhibition profiles. Antimicrob Agents Chemother. 2016; 60(3): 1377-1384. doi: 10.1128/AAC.01768-15
51. Zmarlicka M, Nailor M, Nicolau D. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infect Drug Resist. 2015; 8: 297-309. doi: 10.2147/IDR.S39186
52. Bahr G, Vitor-Horen L, Bethel ChR, Bonomo RA, Gonzalez LJ, Vila AJ. Clinical evolution of New Delhi metallo-β-lactamase (NDM) optimizes resistance under Zn(II) deprivation. Antimicrob Agents Chemother. 2017; 62(1): e01849-17. doi: 10.1128/AAC.01849-17
53. Weber RE, Pietsch M, Frühauf A, Pfeifer Y, Martin M, Luft D, et al. IS26-mediated transfer of blaNDM-1 as the main route of resistance transmission during a polyclonal, multispecies outbreak in a German hospital. Front Microbiol. 2019; 10: 2817. doi: 10.3389/fmicb.2019.02817
54. Adams MD, Pasteran F, Traglia GM, Martinez J, Huang F, Liu C, et al. Distinct mechanisms of dissemination of NDM-1 metallo-β-lactamase in Acinetobacter species in Argentina. Antimicrob Agents Chemother. 2020; 64(5): e00324-20. doi: 10.1128/AAC.00324-20
55. Wendel AF, MacKenzie CR. Characterization of a novel metallo-β-lactamase variant, GIM-2, from a clinical isolate of Enterobacter cloacae in Germany. Antimicrob Agents Chemother. 2015; 59(3): 1824-1825. doi: 10.1128/AAC.05062-14
56. Lu Y, Zhao S, Liang H, Zhang W, Liu J, Hu H. The first report of a novel IncHI1B blaSIM-1-carrying megaplasmid pSIM-1-BJ01 from a clinical Klebsiella pneumoniae isolate. Infect Drug Resist. 2019; 12: 2103-2112. doi: 10.2147/IDR.S212333
57. Zheng Z, Cheng Q, Chan EW‐C, Chen S. Genetic and biochemical characterization of VMB‐1, a novel metallo‐β‐ lactamase encoded by a conjugative, broad‐host range IncC plasmid from Vibrio spp. Adv. Biosys. 2020; 4: 1900221. doi: 10.1002/adbi.201900221
58. Poirel L, Palmieri M, Brilhante M, Masseron A, Perreten V, Nordmann P. PFM-like enzymes are a novel family of subclass B2 metallo-β-lactamases from Pseudomonas synxantha belonging to the Pseudomonas fluorescens complex Nordmann. Antimicrob Agents Chemother. 2020; 64(2): e01700-19. doi: 10.1128/AAC.01700-19
59. Brem J, Struwe WB, Rydzik AM, et al. Studying the activesite loop movement of the São Paolo metallo-β- lactamase-1. Chem Sci. 2015; 6(2): 956-963. doi: 10.1039/c4sc01752h
60. Lopez C, Ayala JA, Bonomo RA, et al. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun. 2019; 10: 3617. doi: 10.1038/s41467-019-11615-w
61. Jabalameli F, Taki E, Emaneini M, Beigverdi R. Prevalence of metallo-β-lactamase-encoding genes among carbapenemresistant Pseudomonas aeruginosa strains isolated from burn patients in Iran. Rev Soc Bras Med Trop. 2018; 51(3): 270-276. doi: 10.1590/0037-8682-0044-2018
62. Smith CA, Stewart NK, Toth M, Vakulenko SB. Structural insights into the mechanism of carbapenemase activity of the OXA-48 β-lactamase. Antimicrob Agents Chemother. 2019; 63(10): e01202-19. doi: 10.1128/AAC.01202-19
63. Pasteran F, Denorme L, Ote I, et al. Rapid identification of OXA-48 and OXA-163 subfamilies in carbapenem-resistant gram-negative Bacilli with a novel immunochromatographic lateral flow assay. J Clin Microbiol. 2016; 54(11): 2832-2836. doi: 10.1128/JCM.01175-16
64. Doi Y. Treatment options for carbapenem-resistant gramnegative bacterial infections. Clin Infect Dis. 2019; 69(7): S565-S575. doi: 10.1093/cid/ciz830
65. Joshi PR, Acharya M, Kakshapati T, et al. Co-existence of bla OXA-23 and blaNDM-1 genes of Acinetobacter baumannii isolated from Nepal: Antimicrobial resistance and clinical significance. Antimicrob Resist Infect Control. 2017; 6(21). doi: 10.1186/s13756-017-0180-5
66. Кузьменков А.Ю., Трушин И.В., Авраменко А.А., Эйдельштейн М.В., Дехнич А.В., Козлов Р.С. Amrmap: интернетплатформа мониторинга антибиотикорезистентности. КМАХ. 2017. 19(2): 84-90.
67. Baeza LL, Pfennigwerth N, Greissl C, Gottig S, Saleh A, Stelzer Y, et al. Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect. 2019; 25(10): 1286.e9-1286.e15. doi: 10.1016/j.cmi.2019.03.003
68. Zhivich A. Fighting bacterial resistance: Approaches, challenges, and opportunities in the search for new antibiotics. Part 1. Antibiotics used in clinical practice: mechanisms of action and the development of bacterial resistance. The Microbiology Independent Research (MIR) journal. 2017; 4(1): 31-51. doi: 10.18527/2500-2236-2017-4-1-31-51
69. Lohans CT, Groesen E van, Kumar K, Tooke CL, Spencer J, Paton RS, et al. A new mechanism for β‐ lactamases: Class D enzymes degrade 1β‐methyl carbapenems through lactone formation. Angew Chem Int Ed Engl. 2018; 57: 1282. doi: 10.1002/anie.201711308
70. Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Fadeeva TV, Pozdnyakov AS, et al. NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole. Nanomaterials. 2020; 10(8): 1477. doi: 10.3390/nano10081477/
71. Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: Agents, action, and resistance patterns. Clin Microbiol Rev. 2017; 30(3): 827-860. doi: 10.1128/CMR.00112-16
72. Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Hum Microb J. 2019; 11: 100052. doi: 10.1016/j.humic.2019.01.001
73. Белобородов В.Б., Гусаров В.Г., Дехнич А.В., Замятин М.Н., Зубарева Н.А., Зырянов С.К. и др. Диагностика и антимикробная терапия инфекций, вызванных полирезистентными микроорганизмами: методические рекомендации Российской некоммерческой общественной организации «Ассоциация анестезиологов-реаниматологов», Межрегиональной общественной организации «Альянс клинических химиотерапевтов и микробиологов», Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ), Общественной организации «Российский Сепсис Форум». Вестник анестезиологии и реаниматологии. 2020; 17 (1): 52-83.
74. Лазарева И.В., Агеевец В.А., Ершова Т.А., Зуева Л.П., Гончаров А.Е., Дарьина М.Г. и др. Распространение и антибактериальная резистентность грамотрицательных бактерий, продуцентов карбапенемаз, в Санкт-Петербурге и некоторых других регионах Российской Федерации. Антибиотики и химиотерапия. 2016; 61 (11-12): 28-38.
75. Pagano M, Martins AF, Barth AL. Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Braz J Microbiol. 2016; 47(4): 785-792. doi: 10.1016/j.bjm.2016.06.005
76. Shek EA, Sukhorukova MV, Edelstein MV, Skleenova EYu, Ivanchik NV, Shajdullina ER, et al. Antimicrobial resistance, carbapenemase production, and genotypes of nosocomial Pseudomonas aeruginosa isolates in Russia: Results of multicenter epidemiological study “MARATHON 2015–2016”. Clinical Microbiology and Antimicrobial Chemotherapy. 2019; 21(2): 160-170. doi: 10.36488/cmac.2019.2.160-170
77. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, et al. Carbapenemase-producing organisms: A global scourge. Clin Infect Dis. 2018; 66(8): 1290-1297. doi: 10.1093/cid/cix893
Рецензия
Для цитирования:
Невежина А.В. Карбапенемазы как фактор устойчивости к антибактериальным препаратам. Acta Biomedica Scientifica. 2020;5(6):95-105. https://doi.org/10.29413/ABS.2020-5.6.11
For citation:
Nevezhina A.V. Carbapenemases as factors of Resistance to Antibacterial Drugs. Acta Biomedica Scientifica. 2020;5(6):95-105. (In Russ.) https://doi.org/10.29413/ABS.2020-5.6.11