Preview

Acta Biomedica Scientifica

Advanced search

Molecular Mechanisms of Endometrial Functioning in Women with Polycystic Ovary Syndrome

https://doi.org/10.29413/ABS.2020-5.6.1

Abstract

Endocrinologic and metabolic abnormalities in polycystic ovary syndrome (PCOS) may have complex effects on the endometrium, contributing to the infertility and endometrial disorders observed in women with this  syndrome. The consequences of PCOS on endometrial homeostasis and pathophysiology have not been comprehensively understood. This review provides an overview of the molecular mechanisms of endometrial  function in women with this pathology. Analysis of the literature data found that women with PCOS have changes in the effects of estrogen and progesterone in the endometrium, violation of the spatial and temporal expression of steroid receptors. In PCOS impaired follicle maturation and consequent anovulation cause a chronic progesterone-deficient state that affects the endometrial milieu. Furthermore, even with ovulation (and thus progesterone acting on endometrium), the PCOS endometrium has several abnormalities including altered expression pattern of receptivity markers during the period of implantation and glucose transporter 4 (GLUT4) expression as well as progesterone-resistance. These pathological phenomena explain the possible mechanisms of increasing endometrial cell proliferation. An imbalance in adipose tissue worsens the increase in estrogen levels and its pathological effects. Hyperandrogenia and hyperinsulinemia lead to disruption of cellular proliferation and apoptosis, affect insulin signaling and glucose metabolism, disrupting endometrial energy homeostasis. Inflammation and oxidative stress in the endometrium are closely related, and lead to increased pathological changes in the endometrium. Inflammation can induce production of inflammatory cytokines in this syndrome and directly stimulates excess  ovarian androgen production. The potential mechanisms underlying these disorders, specifically in women with PCOS, are complex and await additional transdisciplinary research for their complete elucidation.

About the Author

A. Yu. Sambyalova
Scientific Сentre for Family Health and Human Reproduction Problems
Russian Federation

Junior Research Officer at the Laboratory of Personalized Medicine

Timiryazeva str. 16, Irkutsk 664003, Russian Federation




References

1. Naz MSG, Tehrani FR, Majd HA, Ahmadi F, Ozgoli G, Fakari FR, et al. The prevalence of polycystic ovary syndrome in adolescents: A systematic review and meta-analysis. Int J Reprod Biomed. 2019; 17(8): 533‐542. doi: 10.18502/ijrm.v17i8.4818

2. Russian Association of Endocrinologists, Russian Society of Obstetricians and Gynecologists. Polycystic ovary syndrome. Clinical guidelines. Moscow: Ministry of Health of Russia; 2016. (In Russ.)

3. The Rotterdam ESHRE/ASRM‐sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004; 19(1): 41-47. doi: 10.1093/humrep/deh098

4. National Institutes of Health. Evidence-based Methodology Workshop on Polycystic Ovary Syndrome December 3–5, 2012. Final report. URL: https://prevention.nih.gov/sites/default/files/2018-06/FinalReport.pdf

5. Mykhalchenko K, Lizneva D, Trofimova T, Walker W, Suturina L, Diamond MP, et al. Genetics of polycystic ovary syndrome. Expert Rev Mol Diagn. 2017; 17(7): 723-733. doi: 10.1080/14737159.2017.1340833

6. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016; 106(1): 6‐15. doi: 10.1016/j.fertnstert.2016.05.003

7. Lizneva D, Kirubakaran R, Mykhalchenko K, Suturina L, Chernukha G, Diamond MP, et al. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: Systematic review and metaanalysis. Fertil Steril. 2016; 106(6): 1510-1520.e2. doi: 10.1016/j.fertnstert.2016.07.1121

8. Panarina OV, Rashidova MA, Belenkaya LV, Trofimova TA, Sholokhov LF. Modern concepts of the pathogenesis of polycystic ovary syndrome (literature review). Acta biomedica scientifica. 2017; 2(4): 9-14. doi: 10.12737/article_59fad50f053c20.99807656. (In Russ.)

9. Amjadi F, Mehdizadeh M, Ashrafi M, Nasrabadi D, Taleahmad S, Mirzaei M, et al. Distinct changes in the proteome profile of endometrial tissues in polycystic ovary syndrome compared with healthy fertile women. Reproductive BioMedicine Online. 2018; 37(2): 184-200. doi: 10.1016/j.rbmo.2018.04.043

10. Sharifulin EM, Lazareva LM, Kanya OV, Stefanenkova AA, Belykh DV, Suturina LV. Endometrial morphology in women of reproductive age with PCOS. Acta biomedica scientifica. 2018; 3(3): 136-142. doi: 10.29413/ABS.2018-3.3.21. (In Russ.)

11. Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013; 34(1): 130‐162. doi: 10.1210/er.2012-1043

12. Critchley HO, Saunders PT. Hormone receptor dynamics in a receptive human endometrium. Reprod Sci. 2009; 16(2): 191‐199. doi: 10.1177/1933719108331121

13. Giudice LC. Elucidating endometrial function in the postgenomic era. Hum Reprod Update. 2003; 9(3): 223‐235. doi: 10.1093/humupd/dmg019

14. Talbi S, Hamilton AE, Vo KC, Overgaard MT, Dosiou C, Le Shay N, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006; 147(3): 1097‐1121. doi: 10.1210/en.2005-1076

15. Mehasseb MK, Panchal R, Taylor AH, Brown L, Bell SC, Habiba M. Estrogen and progesterone receptor isoform distribution through the menstrual cycle in uteri with and without adenomyosis. Fertil Steril. 2011; 95(7): 2228-2235.e1. doi: 10.1016/j.Fertnstert.2011.02.051

16. Al-Sabbagh M, Lam EW, Brosens JJ. Mechanisms of endometrial progesterone resistance. Mol Cell Endocrinol. 2012; 358(2): 208‐215. doi: 10.1016/j.mce.2011.10.035

17. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, et al. Two distinct estrogen- regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990; 9(5): 1603-1614. doi: 10.1002/j.1460-2075.1990.tb08280.x

18. Wetendorf M, De Mayo FJ. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol Cell Endocrinol 2012; 357(1-2): 108-118. doi: 10.1016/j.mce.2011.10.028

19. Maruyama T, Yoshimura Y. Molecular and cellular mechanisms for differentiation and regeneration of the uterine endometrium. Endocr J. 2008; 55: 795-810. doi: 10.1507/endocrj.k08e-067

20. Luchetti CG, Mikó E, Szekeres-Bartho J, Paz DA, Motta AB. Dehydroepiandrosterone and metformin modulate progesteroneinduced blocking factor (PIBF), cyclooxygenase 2 (COX2) and cytokines in early pregnant mice. J Steroid Biochem Mol Biol. 2008; 111(3-5): 200‐207. doi: 10.1016/j.jsbmb.2008.06.007

21. Critchley HO, Brenner RM, Henderson TA, Williams K, Nayak NR, Slayden OD, et al. Estrogen receptor beta, but not estrogen receptor alpha, is present in the vascular endothelium of the human and nonhuman primate endometrium. J Clin Endocrinol Metab. 2001; 86(3): 1370‐1378. doi: 10.1210/jcem.86.3.7317

22. Critchley HO, Kelly RW, Brenner RM, Baird DT. Antiprogestins as a model for progesterone withdrawal. Steroids. 2003;68(10-13): 1061‐1068. doi: 10.1016/j.steroids.2003.07.001

23. Venturoli S, Porcu E, Fabbri R, Magrini O, Gammi L, Paradisi R, et al. Episodic pulsatile secretion of FSH, LH, prolactin, oestradiol, oestrone, and LH circadian variations in polycystic ovary syndrome. Clin Endocrinol (Oxf). 1988; 28(1): 93‐107. doi: 10.1111/j.1365-2265.1988.tb01208.x

24. Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, Mahler JF, et al. Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci USA. 1998; 95: 15677-15682. doi: 10.1073/pnas.95.26.15677

25. Hewitt SC, Deroo BJ, Hansen K, Collins J, Grissom S, Afshari CA, et al. Estrogen receptor-dependent genomic responses in the uterus mirror the biphasic physiological response to estrogen. Mol Endocrinol. 2003; 17: 2070-2083. doi: 10.1210/me.2003-0146

26. Wang A, Ji L, Shang W, Li M, Chen L, White RE, et al. Expression of GPR30, ERα and ERβ in endometrium during window of implantation in patients with polycystic ovary syndrome: A pilot study. Gynecol Endocrinol. 2011; 27(4): 251-255. doi: 10.3109/09513590.2010.487584

27. Wang T, Zhang J, Hu M, Zhang Y, Cui P, Li X, et al. Differential expression patterns of glycolytic enzymes and mitochondriadependent apoptosis in PCOS patients with endometrial hyperplasia, an early hallmark of endometrial cancer, in vivo and the impact of metformin in vitro. Int J Biol Sci. 2019; 15(3): 714‐725. doi: 10.7150/ijbs.31425

28. Ferreira SR, Motta AB. Uterine function: From normal to polycystic ovarian syndrome alterations. Curr Med Chem. 2018; 25(15): 1792‐1804. doi: 10.2174/0929867325666171205144119

29. Chrousos GP, MacLusky NJ, Brandon DD, et al. Progesterone resistance. Adv Exp Med Biol. 1986; 196: 317‐328. doi: 10.1007/978-1-4684-5101-6_21

30. Margarit L, Taylor A, Roberts MH, Hopkins L, Davies C, Brenton AG, et al. MUC1 as a discriminator between endometrium from fertile and infertile patients with PCOS and endometriosis. J Clin Endocrinol Metab. 2010; 95(12): 5320‐5329. doi: 10.1210/jc.2010-0603

31. Quezada S, Avellaira C, Johnson MC, Gabler F, Fuentes A, Vega M. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fertil Steril. 2006; 85(4): 1017‐1026. doi: 10.1016/j.fertnstert.2005.09.053

32. Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013; 34(1): 130‐162. doi: 10.1210/er.2012-1043

33. Kim JY, Song H, Kim H, Kang HJ, Jun JH, Hong SR, et al. Transcriptional profiling with a pathway-oriented analysis identifies dysregulated molecular phenotypes in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009; 94(4): 1416‐1426. doi: 10.1210/jc.2008-1612

34. Hu M, Li J, Zhang Y, Brännström M, Shao LR, Billig H. Endometrial progesterone receptor isoforms in women with polycystic ovary syndrome. Am J Transl Res. 2018; 10(8): 2696‐2705.

35. Elia EM, Pustovrh C, Amalfi S, Devoto L, Motta AB. Link between metformin and the peroxisome proliferator-activated receptor γ pathway in the uterine tissue of hyperandrogenized prepubertal mice. Fertil Steril. 2011; 95(8): 2534‐2537.e1. doi: 10.1016/j.fertnstert.2011.02.004

36. Younas K, Quintela M, Thomas S, Garcia-Parra J, Blake L, Whiteland H, et al. Delayed endometrial decidualisation in polycystic ovary syndrome: The role of AR-MAGEA11. J Mol Med (Berl). 2019; 97(9): 1315-1327. doi: 10.1007/s00109-019-01809-6

37. Apparao KB, Lovely LP, Gui Y, Lininger RA, Lessey BA. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002; 66(2): 297-304. doi: 10.1095/biolreprod66.2.297

38. Semeniuk LM, Likhachov VK, Yuzvenko TY, Dobrovolska LМ, Makarov OG. Risk markers of reproductive loss in women with hyperandrogenism. Wiad Lek. 2018; 71(8): 1550-1553.

39. Lee MH, Yoon JA, Kim HR, Kim YS, Lyu SW, Lee BS, et al. Hyperandrogenic milieu dysregulates the expression of insulin signaling factors and glucose transporters in the endometrium of patients with polycystic ovary syndrome. Reprod Sci. 2019; 1933719119833487. doi: 10.1177/1933719119833487

40. Sumarac-Dumanovic M, Apostolovic M, Janjetovic K, Janjetovic K, Jeremic D, Popadic D, et al. Downregulation of autophagy gene expression in endometria from women with polycystic ovary syndrome. Mol Cell Endocrinol. 2017; 440: 116‐124. doi: 10.1016/j.mce.2016.11.009

41. Zhao PL, Zhang QF, Yan LY, Huang S, Chen Y, Qiao J. Functional investigation on aromatase in endometrial hyperplasia in polycystic ovary syndrome cases. Asian Pac J Cancer Prev. 2014; 15(20): 8975‐8979. doi: 10.7314/apjcp.2014.15.20.8975

42. Bacallao K, Leon L, Gabler F, Soto E, Romero C, Valladares L, et al. In situ estrogen metabolism in proliferative endometria from untreated women with polycystic ovarian syndrome with and without endometrial hyperplasia. J Steroid Biochem Mol Biol. 2008; 110(1-2): 163‐169. doi: 10.1016/j.jsbmb.2008.03.031

43. Robinson S, Kiddy D, Gelding SV, Willis D, Niththyananthan R, Bush A, et al. The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries. Clin Endocrinol (Oxf). 1993; 39(3): 351‐355. doi: 10.1111/j.1365-2265. 1993.tb02376.x

44. Oróstica L, Rosas C, Plaza-Parrochia F, Astorga I, Gabler F, García V, et al. Altered steroid metabolism and insulin signaling in PCOS endometria: Impact in tissue function. Curr Pharm Des. 2016; 22(36): 5614‐5624. doi: 10.2174/1381612822666160810111528

45. Diamanti-Kandarakis E, Kandaraki E, Christakou C, Panidis D. The effect of pharmaceutical intervention on lipid profile in polycystic ovary syndrome. Obes Rev. 2009; 10(4): 431‐441. doi: 10.1111/j.1467-789X.2009.00588.x

46. Qi J, Wang W, Zhu Q, He Y, Lu Y, Wang Y, et al. Local cortisol elevation contributes to endometrial insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab. 2018; 103(7): 2457-2467. doi: 10.1210/jc.2017-02459

47. Koc O, Ozdemirici S, Acet M, Soyturk U, Aydin S. Nuclear factor-κB expression in the endometrium of normal and overweight women with polycystic ovary syndrome. J Obstet Gynaecol. 2017; 37(7): 924-930. doi: 10.1080/01443615.2017.1315563

48. Kolesnikova LI, Petrova VA, Kornakova NV, Labygina AV, Suturina LV. Lipid peroxidation and antioxidant state in women with endocrine factors of sterility. Journal of obstetrics and womans diseases. 2008; 57(1): 52-56. (In Russ.)

49. Kolesnikova LI, Danusevich IN, Kurashova NA, Suturina LV, Grebenkina LA, Dolgikh MI. Features of lipid peroxidation and antioxidant protection in women with chronic endometritis end reproductive disorders. Fundamental research. 2013; (9-5): 829-832. (In Russ.)

50. Kolesnikova LI, Kornakova NV, Labygina AV, Petrova VA, Sholokhov LF, Dolgikh MI, et al. Hormonal-metabolic processes condition of women with polycystic ovaries and infertility. Siberian Scientific Medical Journal. 2008; 28(1): 21-25. (In Russ.)

51. Darenskaya MA, Grebenkina LA, Nikitina OA, Danusevich IN, Lazareva LM, Nadelyaeva YG, et al. Analysis of pro- and antioxidant blood activity in women with different phenotypes of polycystic ovary syndrome and infertility. Obstetrics and Gynecology. 2017; (8): 86-91. doi: 10.18565/aig.2017.8.86-91. (In Russ.)

52. Kolesnikova LI, Kolesnikov SI, Darenskaya MA, Grebenkina LA, Nikitina OA, Lazareva LM, et al. Activity of LPO processes in women with polycystic ovarian syndrome and infertility. Bull Exp Biol Med. 2017; 162(3): 320-322. doi: 10.1007/s10517-017-3605-5

53. Artimani T, Karimi J, Mehdizadeh M, Yavangi M, Khanlarzadeh E, Ghorbani M, et al. Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS). Gynecol Endocrinol. 2018; 34(2): 148‐152. doi: 10.1080/09513590.2017.1371691

54. Oróstica L, Poblete C, Romero C, Vega M. Pro-inflammatory markers negatively regulate IRS1 in endometrial cells and endometrium from women with obesity and PCOS. Reprod Sci. 2020; 27(1): 290‐300. doi: 10.1007/s43032-019-00026-3

55. Ananiev EV. Polycystic ovary syndrome and pregnancy. Obstetrics and Gynecology. 2017; (9): 5-11. doi: 10.18565/aig.2017.9.5-11. (In Russ.)

56. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003; 88(1): 238-243. doi: 10.1210/jc.2002-021072

57. Daftary GS, Kayisli U, Seli E, Bukulmez O, Arici A, Taylor HS. Salpingectomy increases peri-implantation endometrial HOXA10 expression in women with hydrosalpinx. Fertil Steril. 2007; 87(2): 367‐372. doi: 10.1016/j.fertnstert.2006.06.041

58. Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, et al. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet. 2006; 38(10): 1204-1209. doi: 10.1038/ng1874

59. Paria BC, Ma W, Tan J, Raja S, Das SK, Dey SK, et al. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc Natl Acad Sci USA. 2001; 98(3): 1047-1052. doi: 10.1073/pnas.98.3.1047

60. Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S, Trew G, et al. Deregulation of the serum- and glucocorticoidinducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med. 2011; 17(11): 1509-1513. doi: 10.1038/nm.2498

61. Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T, et al. Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell. 2011; 21(6): 1014-1025. doi: 10.1016/j.devcel.2011.09.010

62. Li Q, Kannan A, DeMayo FJ, Lydon JP, Cooke PS, Yamagishi H, et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science. 2011; 331(6019): 912-916. doi: 10.1126/science.1197454

63. Cheng JG, Chen JR, Hernandez L, Alvord WG, Stewart CL. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc Natl Acad Sci USA. 2001; 98(15): 8680‐8685. doi: 10.1073/pnas.151180898

64. Li SY, Song Z, Song MJ, Qin JW, Zhao ML, Yang ZM. Impaired receptivity and decidualization in DHEA-induced PCOS mice. Sci Rep. 2016; 6: 38134. doi: 10.1038/srep38134

65. Robertson SA, Chin PY, Femia JG, Brown HM. Embryotoxic cytokines – potential roles in embryo loss and fetal programming. J Reprod Immunol. 2018; 125: 80-88. doi: 10.1016/j.jri.2017.12.003


Review

For citations:


Sambyalova A.Yu. Molecular Mechanisms of Endometrial Functioning in Women with Polycystic Ovary Syndrome. Acta Biomedica Scientifica. 2020;5(6):9-19. (In Russ.) https://doi.org/10.29413/ABS.2020-5.6.1

Views: 820


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)