Preview

Acta Biomedica Scientifica

Advanced search

Role of Growth Factors in the Adhesive Process in the Abdominal Cavity

https://doi.org/10.29413/ABS.2019-4.5.16

Abstract

Fibroproliferative diseases have been described in the lungs, kidneys, liver, eyes, heart, skin, and abdomen. Each fibrous pathology has causal factors and pathological manifestations characteristic of this organ and this condition. However, there are common mechanisms underlying many fibrous pathologies. This gives potential value to studies focused on specific processes, among which is the adhesive process in the abdominal cavity. The study of growth factors in the formation of connective tissue contributes to a better understanding of the pathogenetic picture in this pathology. It is shown that vascular endothelial growth factor, fibroblast growth factor, transforming growth factor, platelet growth factor, insulin-like growth factor and keratinocyte growth factor participate in the development of abdominal adhesions. Each of these factors contributes significantly to the formation of peritoneal fibrosis.
Thus, damage to any tissue initiates a complex multistage process, which is regulated by a large number of cytokines and growth factors. Growth factors control cell migration, proliferation, differentiation, and survival. In addition, they are able to influence the expression of other factors involved in the regenerative response. Understanding the process that develops during the formation of the adhesive process in the abdominal cavity and the growth factors affecting it is important for their further use in order to prevent the pathological process.

About the Authors

N. N. Dremina
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Cand. Sc. (Biol.), Senior Research Officer at the Laboratory of Cell Technologies and Regenerative Medicine

Bortsov Revolutsii str. 1, Irkutsk 664003, Russian Federation



M. G. Shurygin
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Dr. Sc. (Med.), Head of the Scientific Laboratory Department

Bortsov Revolutsii str. 1, Irkutsk 664003, Russian Federation



E. E. Chepurnikh
Irkutsk Scientific Centre of Surgery and Traumatology; Irkutsk State Medical University
Russian Federation

Cand. Sc. (Med.), Academic Secretary; Associate Professor at the Department of Advanced Level Surgery

Bortsov Revolutsii str. 1, Irkutsk 664003, Russian Federation

Krasnogo Vosstaniya str. 1, Irkutsk 664003, Russian Federation



I. A. Shurygina
Irkutsk Scientific Centre of Surgery and Traumatology
Russian Federation

Dr. Sc. (Med.). Professor of RAS, Deputy Director for Science

Bortsov Revolutsii str. 1, Irkutsk 664003, Russian Federation



References

1. Acun G, Ozdemir H, Sunamak O, Ozdemir ZU, Baskan E, Yazi M, Savas B, Berberoglu U. The effect of single-dose intraperitoneal bevacizumab on peritoneal adhesion formation. Rev Invest Clin. 2018; 70(6): 279-284. doi: 10.24875/RIC.18002589

2. Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development. 2017; 144(22): 4047-4060. doi: 10.1242/dev.152587

3. Gimbel ML, Chelius D, Hunt TK, Spencer EM. A novel approach to reducing postoperative intraperitoneal adhesions through the inhibition of insulinlike growth factor I activity. Arch Surg. 2001; 136(3): 311-317.

4. Zhao J, Hu L, Liu J, Gong N, Chen L. The effects of cytokines in adipose stem cell-conditioned medium on the migration and proliferation of skin fibroblasts in vitro. BioMed. Research. International. 2013; 2013: 578479. doi: 10.1155/2013/578479

5. Wei G, Zhou C, Wang G, Fan L, Wang K, Li X. Keratinocyte growth factor combined with a sodium hyaluronate gel inhibits postoperative intra-abdominal adhesions. Int. J. Mol. Sci. 2016; 17(10): 1611. doi.org/10.3390/ijms17101611

6. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019; 176(6): 1248-1264. doi: 10.1016/j.cell.2019.01.021

7. Yen TT, Thao DT, Thuoc TL. An overview on keratinocyte growth factor: from the molecular properties to clinical applications. Protein Pept Lett. 2014; 21(3): 306-317.

8. Shurygin MG, Shurygina IA, Dremina NN. Dynamics of vascular endothelial growth factors and fibroblastic growth factor in experimental myocardial infarction. Acta Biomedica Scientifica. 2007; 6(58): 169-174. (In Russ.)

9. Ishiguro S, Akasaka Y, Kiguchi H, Suzuki T, Imaizumi R, Ishikawa Y, Ito K, Ishii T. Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen. 2009; 17(4): 617-625. doi: 10.1111/j.1524-475X.2009.00511.x

10. Shurygin MG, Shurygina IA, Dremina NN. Influence of vascular endothelial growth factor on the level of collagen formation during the development of postinfarction cardiosclerosis. Sibirskiy meditsinskiy zhurnal. 2008; 78(3): 53-55. (In Russ.)

11. Li Y, Kowdley KV. Micro RNAs in common human diseases. Genomics Proteomics Bioinformatics. 2012; 10(5): 246-253. doi: 10.1016/j.gpb.2012.07.005

12. Shurygin MG, Shurygina IA. Fibroblast growth factor as a stimulator of angiogenesis in myocardial infarction. Byulleten’ SO RAMN. 2010; 30(6): 89-92. (In Russ.)

13. O’Reilly S. Micro RNAs in fibrosis: opportunities and challenges. Arthritis Res Ther. 2016; 18:11. doi: 10.1186/s13075-016-0929-x

14. Dolivo DM, Larson SA, Dominko T. Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev. 2017; 38: 49-58. doi: 10.1016/ j.cytogfr.2017.09.003

15. Grella A, Kole D, Holmes W, Dominko T. FGF2 overrides TGFβ1-driven integrin ITGA11 expression in human dermal fibroblasts. J Cell Biochem. 2016; 117(4): 1000-1008. doi: 10.1002/jcb.25386

16. Ayushinova NI, Shurygina IA, Shurygin MG, Grigoryev EG. Hospital epidemiology of peritoneal commissures in abdominal cavity. Byulleten’ VSNTs SO RAMN. 2016; 1. 4(110): 115-118. (In Russ.)

17. Tomino Y. Mechanisms and interventions in peritoneal fibrosis. Clin Exp Nephrol. 2012; 16(1): 109-114. doi: 10.1007/s10157-011-0533-y

18. Takai S, Yoshino M, Takao K, Yoshikawa K, Jin D. Periostin antisense oligonucleotide prevents adhesion formation after surgery in mice. J Pharmacol Sci. 2017; 133(2): 65-69. doi: 10.1016/j.jphs.2016.10.009

19. Lv ZD, Zhao WJ, Jin LY, Wang WJ, Dong Q, Li N, Xu H.M, Wang HB. Blocking TGF-β1 by P17 peptides attenuates gastric cancer cell induced peritoneal fibrosis and prevents peritoneal dissemination in vitro and in vivo. Biomed Pharmacother. 2017; 88: 27-33. doi: 10.1016/j.biopha.2017.01.039

20. Bianchi E, Boekelheide K, Sigman M, Lamb DJ, Hall SJ, Hwang K. Ghrelin inhibits post-operative adhesions via blockage of the TGF-β signaling pathway. PLoS One. 2016; 11(4): e0153968. doi: 10.1371/journal.pone.0153968

21. Sakharov VN, Litvitskiy PF. The role of different phenotypes of macrophages in the development of human diseases. Vestnik RAMN. 2015; (1): 26-31

22. Ma TT, Meng XM. TGF-β/Smad and renal fibrosis. Adv Exp Med Biol. 2019; 1165: 347-364. doi: 10.1007/978-981-13-8871-2_16

23. Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaíno P, Pérez-Lozano ML, et al. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol. 2011; 22(9): 1682-1695. doi: 10.1681/ASN.2010111197

24. Abrahams AC, Habib SM, Dendooven A, Riser BL, van der Veer JW, Toorop RJ, et al. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-β1, and vascular endothelial growth factor. PLoS One. 2014; 9(11): e112050. doi: 10.1371/journal.pone.0112050

25. Thaler K, Mack JA, Berho M, Grotendorst G, Wexner SD, Abramson SR. Coincidence of connective tissue growth factor expression with fibrosis and angiogenesis in postoperative peritoneal adhesion formation. Eur Surg Res. 2005; 37(4): 235-241.

26. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, Lin A, Yeowell D. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011; 4(1): 4. doi.org/10.1186/1755-1536-4-4

27. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008; 16(5): 585-601. doi: 10.1111/j.1524-475X.2008.00410.x

28. Wang L, Liu N, Xiong C, Xu L, Shi Y, Qiu A, Zang X, Mao H, Zhuang S. Inhibition of EGF receptor blocks the development and progression of peritoneal fibrosis. JASN. 2016; 27(9): 2631-2644. doi.org/10.1681/ASN.2015030299

29. Uguralp S, Akin M, Karabulut AB, Harma B, Kiziltay A, Kiran TR, Hasirci N. Reduction of peritoneal adhesions by sustained and local administration of epidermal growth factor. Pediatr Surg Int. 2008; 24(2): 191-197.

30. Acun G, Ozdemir H, Sunamak O, Ozdemir ZU, Baskan E, Yazi M, Savas B, Berberoglu U. The effect of single-dose intraperitoneal bevacizumab on peritoneal adhesion formation. Rev Invest Clin. 2018; 70(6): 279-284. doi: 10.24875/RIC.18002589

31. Gimbel ML, Chelius D, Hunt TK, Spencer EM. A novel approach to reducing postoperative intraperitoneal adhesions through the inhibition of insulinlike growth factor I activity. Arch Surg. 2001; 136(3): 311-317.

32. Wei G, Zhou C, Wang G, Fan L, Wang K, Li X. Keratinocyte growth factor combined with a sodium hyaluronate gel inhibits postoperative intra-abdominal adhesions. Int. J. Mol. Sci. 2016; 17(10): 1611. doi.org/10.3390/ijms17101611

33. Yen TT, Thao DT, Thuoc TL. An overview on keratinocyte growth factor: from the molecular properties to clinical applications. Protein Pept Lett. 2014; 21(3): 306-317.

34. Ishiguro S, Akasaka Y, Kiguchi H, Suzuki T, Imaizumi R, Ishikawa Y, Ito K, Ishii T. Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen. 2009; 17(4): 617-625. doi: 10.1111/j.1524-475X.2009.00511.x

35. Li Y, Kowdley KV. Micro RNAs in common human diseases. Genomics Proteomics Bioinformatics. 2012; 10(5): 246-253. doi: 10.1016/j.gpb.2012.07.005

36. O’Reilly S. Micro RNAs in fibrosis: opportunities and challenges. Arthritis Res Ther. 2016; 18:11. doi: 10.1186/s13075-016-0929-x

37. Grella A, Kole D, Holmes W, Dominko T. FGF2 overrides TGFβ1-driven integrin ITGA11 expression in human dermal fibroblasts. J Cell Biochem. 2016; 117(4): 1000-1008. doi: 10.1002/jcb.25386


Review

For citations:


Dremina N.N., Shurygin M.G., Chepurnikh E.E., Shurygina I.A. Role of Growth Factors in the Adhesive Process in the Abdominal Cavity. Acta Biomedica Scientifica. 2019;4(5):98-103. (In Russ.) https://doi.org/10.29413/ABS.2019-4.5.16

Views: 678


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)