Preview

Acta Biomedica Scientifica

Advanced search

Modulation of Streptomycin Killing Rate against Mature Escherichia Coli Biofilms in the Presence of Medicinal Plant Extracts

https://doi.org/10.29413/ABS.2019-4.5.8

Abstract

Background. Medicinal plant extracts exhibiting pro- and antioxidant properties may affect antibiotic-induced killing of biofilm-producing bacteria in both synergistic and antagonistic modes. Better understanding of these alternations is required to adjust antibiotic therapy and herbal medicine in order to exclude unwanted losses of antibiotic efficiency.
Aim: to study modulation modes of streptomycin killing rate against mature biofilms of Escherichia coli in the presence of different doses of commonly used medicinal plant extracts.
Materials and methods. Pharmacodynamic parameter killing rate and mass biofilm formation were determined in the presence of streptomycin and medicinal plant extracts.
Results. Synergism was found between 100 mg/ml streptomycin and low doses (0.83 mg of dry herb/ml) of green, black tea, Arctostaphylos uva-ursi, Betula pendula and Laminaria japonica against killing mature biofilms. Alternatively, high doses (6.64 mg of dry herb/ml) of green, black tea and Vaccinium vitis-ideae demonstrated antagonism, decreasing killing rate and enhancing biofilm formation. Presumably, high doses of the extracts were sufficient to enhance biofilm formation blocking penetration of streptomycin through enlarged biofilm matrix and diminishing the killing rate.
Conclusions. Widely consumed as soft beverages or for prophylactic purposes green, black tea and V. vitis-ideae could promote strong antagonistic effects with streptomycin. These extracts can stimulate biofilm production, making benefit for commensal microbiota, but have clinical relevance due to a significant reduction in the lethal efficiency of streptomycin in biofilms of pathogenic strains. This highlights the need of careful antibiotic prescription scheme adjustment when choosing appropriate combinations of plant extracts and antibiotics to achieve a synergistic effect.

About the Authors

Z. Y. Samoilova
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of Russian Academy of Science
Russian Federation

Cand. Sc. (Biol.), Senior Research Officer, Laboratory of Physiology and Genetics of Microorganisms

Goleva str. 13, 614081 Perm, Russian Federation

 



G. V. Smirnova
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of Russian Academy of Science
Russian Federation

Dr. Sc. (Biol.), Leading Research Officer, Laboratory of Physiology and Genetics of Microorganisms

Goleva str. 13, 614081 Perm, Russian Federation



O. N. Oktyabrsky
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of Russian Academy of Science
Russian Federation

Professor, Dr. Sc. (Biol.), Head of the Laboratory of Physiology and Genetics of Microorganisms

https://orcid.org/0000-0002-9864-2094

Goleva str. 13, 614081 Perm, Russian Federation



References

1. TB Alliance. Handbook of anti-tuberculosis agents. Streptomycin. Tuberculosis. 2008; 88(2): 162-163. doi: 10.1016/S1472-9792(08)70027-1

2. Schatz A, Bugie E, Waksman S, Hanssen A, Patel R, Osmon D. The classic: streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Clin Orthop Relat Res. 2005; (437): 3-6. doi: 10.1097/01.blo.0000175887.98112.fe

3. Wojnicz D, Kucharska AZ, Sokół-Łętowska A, Kicia M, Tichaczek-Goska D. Medicinal plant extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urol Res. 2012; 40(6): 683-697. doi: 10.1007/s00240-012-0499-6

4. Akagawa M, Shigemitsu T, Suyama K. Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions. Biosci Biotechnol Biochem. 2003; 67(12): 2632-2640. doi: 10.1271/bbb.67.2632

5. Samoilova Z, Muzyka N, Lepekhina E, Oktyabrsky O, Smirnova G. Medicinal plant extracts can variously modify biofilm formation in Escherichia coli. Antonie Van Leeuwenhoek. 2014; 105(4): 709-722. doi: 10.1007/s10482-014-0126-3

6. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007; 130(5): 797-810. doi: 10.1016/j.cell.2007.06.049

7. Belenky P, Ye JD, Porter CBM, Cohen NR, Lobritz MA, Ferrante T, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 2015; 13(5): 968-980. doi: 10.1016/j.celrep.2015.09.059

8. Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012; 23(2): 174-181. doi: 10.1016/j.copbio.2011.08.007

9. Monte J, Abreu AC, Borges A, Simões LC, Simões M. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens. 2014; 3(2): 473-498. doi: 10.3390/pathogens3020473

10. Goswami M, Magnoli SH, Jawali N. Effects of glutathione and ascorbic acid on streptomycin sensitivity in Escherichia coli. Antimicrob Agents Chemother. 2007; 51(3): 1119-1122. doi: 10.1128/AAC.00779-06

11. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006; 2: 2006.0008. doi: 10.1038/msb4100050

12. Miller JH. Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1972.

13. Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother. 2004; 48(10): 3670-3676. doi: 10.1128/AAC.48.10.3670-3676.2004

14. Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol. 2008; 105(2): 585-590. doi: 10.1111/j.1365-2672.2008.03791.x

15. O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol. 1998; 28(3): 449-461. doi: 10.1046/j.1365-2958.1998.00797.x

16. Samoilova Z, Smirnova G, Muzyka N, Oktyabrsky O. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics. Microbiol Res. 2014; 169(4): 307-313. doi: 10.1016/j.micres.2013.06.013


Review

For citations:


Samoilova Z.Y., Smirnova G.V., Oktyabrsky O.N. Modulation of Streptomycin Killing Rate against Mature Escherichia Coli Biofilms in the Presence of Medicinal Plant Extracts. Acta Biomedica Scientifica. 2019;4(5):50-54. https://doi.org/10.29413/ABS.2019-4.5.8

Views: 796


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)