Preview

Acta Biomedica Scientifica

Advanced search

Participation of reactive oxygen species in the self-regulation of cardiac contractile function

https://doi.org/10.12737/article_590823a53d5e22.75029765

Abstract

The article analyzes various mechanisms of ROS participation in the processes that determine the response of automatism and cardiac contractile function under natural short- or long-term physiological stress, and acute disturbance of energy production in cardiomyocytes. Superoxide and hydrogen peroxide are believed to have a similar effect, while the effect of nitroxide noticeably different. It was noted that increased CA++ in bioplasma not only enhances the contraction of myofibrils, but at the same time accelerates the rate of ATP synthesis. Regulation of volume load on the cellular level is realized by stretching of the sarcomeres, which increases the degree of actomyosin interaction. This corresponds to increase in the number of CA++ activators. Perhaps the formation of ROS in cardiomyocytes in response to stretching is a permanent and mandatory component of physiological responses that can synchronize the release of CA++ from SR and modulate its magnitude. However, in pathological conditions, overproduction of ROS can trigger arrhythmogenic CA++ waves. Some changes of DNA molecules under the influence of ROS may also be helpful to consolidate as a result of natural selection. Reactive oxygen species (ROS) are often considered as selected in the course of evolution as means of combating a variety of infections, but in the course of phylogeny they also were selected as a means of intracellular and extracellular exchange of information.

About the Author

V. I. Kapelko
Russian Cardiology Research and Production Complex
Russian Federation


References

1. Капелько В.И. Взаимосвязь транспорта Ca++, сократительной функции и её энергообеспечения в клетках сердечной мышцы // Бюллетень Всесоюзного кардиологического научного центра АМН СССР. -1979. - № 2. - С. 88-98

2. Капелько В.И. Регуляторная роль кислородных радикалов в миокардиальных клетках // Российский физиологический журнал. - 2004. - № 6. - С. 681-691

3. Капелько В.И., Векслер В.И., Новикова Н.А. Контрактура миокарда при нарушении энергообразования: механизм и значение // В кн.: Чазов Е.И., Смирнов В.Н. (ред.) Метаболизм миокарда. - М.: Наука, 1988. - С. 105-118

4. Меерсон Ф.З. Гиперфункция, гипертрофия, недостаточность сердца. - М.: Медицина, 1968. - 138 с

5. Мелькумянц А.М., Балашов А.С. Механочувствительность артериального эндотелия. - М.: Триада, 2005. - 208 с

6. Скулачев В.П. О биохимических механизмах эволюции и роли кислорода // Биохимия. - 1998. -Т. 63, № 11. - С. 1570-1579

7. Скулачев В.П. Феноптоз: запрограммированная смерть организма // Биохимия. - 1999. - Т. 64, № 12. -С. 1679-1688

8. Чазов Е.И., Розенштраух Л.В., Сакс В.А., Смирнов В.Н., Ундровинас А.И. Регуляция сократимости миокарда посредством влияния на внутриклеточный транспорт энергии // Патол. физиол. эксп. тер. -1976. - № 4. - С. 7-13

9. Шумаев К.Б., Ванин А.Ф., Лакомкин В.Л., Мох В.П., Серебрякова Л.И., Цкитишвили О.В., Тимошин А.А., Максименко А.В., Писаренко О.И., Рууге Э.К., Капелько В.И., Чазов Е.И. Участие активных форм кислорода в модуляции гипотензивного эффекта динитрозильных комплексов железа // Кардиол. вестник. - 2007 - Т. 2, № 14. - C. 31-37

10. Bogoyevitch MA, Ng DC, Court NW, Draper KA, Dhillon A, Abas L (2000). Intact mitochondrial electron transport function is essential for signalling by hydrogen peroxide in cardiac myocytes. J. Mol. Cell. Cardiol., 32 (8), 1469-1480

11. Clementi E, Brown GC, Foxwell N, Moncada S (1999). On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc. Natl. Acad. Sci. USA., 96 (4), 1559-1562.

12. Györke S, Terentyev D (2008). Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc. Res., (77), 245-255.

13. Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S, Malinski T (1997). Mechanical transduction of nitric oxide synthesis in the beating heart. Circ. Res., 81 (3), 372-379.

14. Pittis M, Zhang X, Loke KE, Mital S, Kaley G, Hintze TH (2000). Canine coronary microvessel NO production regulates oxygen consumption in ecNOS knockout mouse heart. J. Mol. Cell. Cardiol., 32 (7), 1141-1146.

15. Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ (2013). X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca2+]i. J. Mol. Cell. Cardiol., (58), 172-181.

16. Yan Y, Liu J, Wei1 C, Li K, Xie W, Wang Y, Cheng H (2008). Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes. Cardiovasc. Res., (77), 432-441.

17. Xu L, Eu JP, Meissner G, Stamler JS (1998). Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, (279), 234-237.


Review

For citations:


Kapelko V.I. Participation of reactive oxygen species in the self-regulation of cardiac contractile function. Acta Biomedica Scientifica. 2016;1(3(2)):155-159. (In Russ.) https://doi.org/10.12737/article_590823a53d5e22.75029765

Views: 667


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)