Pharmacogenetic Warfarin Dosing Algorithm in the Russian Population
https://doi.org/10.29413/ABS.2019-4.3.5
Abstract
Background. To date, there are many pharmacogenetic algorithms for selecting the dose of warfarin. However, there is very little information about the predictive accuracy of the algorithms. We decided to evaluate the predictive accuracy of the Gage algorithm, using a calculator, located on the web site (http://www.warfarindosing.org) in two ethnic groups (Caucasians and Asians), living in Russia.
Aim. To compare the actual warfarin dose (AWD) to the calculated warfarin dose (CWD), using the algorithm in two ethnic groups taking warfarin.
Materials and methods. We included 114 patients (66 Caucasians and 48 Asians): the mean age was
60.91 ± 12.34 years; 61 (53.51 %) men, and 53 (46.49 %) women. The comparative characteristics of the algorithm were tested using the mean absolute error (MAE) between AWD and CWD, and percentage of patients, whose CWD fell within 20 % of AWD (percentage within 20 %). Genotyping for CYP2C9*2, CYP2C9*3, CYP4F*2 and VKORC1 was performed by real-time polymerase chain reaction (RT-PCR) method using Pharmacogenetics Warfarin reagent kits (DNA technology, Russia).
Results. The Gage algorithm produced the predictive accuracy with MAE = 1.02 ± 0.16 mg/day and percentage within 20 % for Asian patients was 39.6 %. We obtained MAE = 1.33 ± 0.16 mg/day and percentage within 20 % for Caucasian patients was 40.9 %. In two ethnic groups (Caucasians and Asians) of the Russian population, overall performance of warfarin pharmacogenetic dosing by the Gage algorithm was similar.
Conclusions. Despite the performance limitation of the current warfarin pharmacogenetic dosing Gage algorithm, constant international normalized ratio monitoring is important.
About the Authors
T. A. BairovaRussian Federation
Tatiana A. Bairova – Dr. Sc. (Med.), Head of the Laboratory of Personalized Medicine ul. Timiryazeva 16, Irkutsk 664003
A. Yu. Sambyalova
Russian Federation
Alexandra Yu. Sambyalova – Junior Research Officer at the Laboratory of Personalized Medicine
ul. Timiryazeva 16, Irkutsk 664003
L. V. Rychkova
Russian Federation
Lyubov V. Rychkova – Dr. Sc. (Med.), Professor, Director
ul. Timiryazeva 16, Irkutsk 664003
E. A. Novikova
Russian Federation
Evgeniya A. Novikova – Postgraduate
ul. Timiryazeva 16, Irkutsk 664003
F. I. Belyalov
Russian Federation
Farid I. Belyalov – Dr. Sc. (Med.), Professor of the Department of Gerontology and Geriatrics
Yubileyniy 100, Irkutsk 664049
D. S. Sargaeva
Russian Federation
Darima S. Sargaeva – Physician
Pavlova 12, Ulan-Ude 670031
E. A. Shchedreeva
Russian Federation
Elena A. Shchedreeva – Physician
b. Ryabikova 31A, Irkutsk 664043
T. G. Ignatyeva
Russian Federation
Tatyana G. Ignatyeva – Physician
ul. Lenina 20A, Irkutsk, 664025
O. A. Ershova
Russian Federation
Oksana A. Ershova – Cand. Sc. (Biol.), Research Officer at the Laboratory of Personalized Medicine
ul. Timiryazeva 16, Irkutsk 664003
V. G. Pustozerov
Russian Federation
Viktor G. Pustozerov – Cand. Sc. (Med.), Chief Physician; Head of the Department of Gerontology and Geriatrics
Yubileyniy 100, Irkutsk 664049
ul. Lenina 20A, Irkutsk, 664025
O. A. Kovaleva
Russian Federation
Olga A. Kovaleva – Physician
ul. Lenina 20A, Irkutsk, 664025
I. V. Rasputina
Russian Federation
Irina V. Rasputina – Physician
b. Ryabikova 31A, Irkutsk 664043
I. A. Noskova
Russian Federation
Inetta A. Noskova – Physician
(Baikalskaya 109, Irkutsk 664047
T. V. Batogova
Russian Federation
Tatyana V. Batogova – Physician
b. Ryabikova 31A, Irkutsk 664043
O. V. Kuznetsova
Russian Federation
Olga V. Kuznetsova – Physician
b. Ryabikova 31A, Irkutsk 664043
O. Yu. Bogoslova
Russian Federation
Olga Yu. Bogoslova – Physician
b. Ryabikova 31A, Irkutsk 664043
S. I. Kolesnikov
Russian Federation
Sergei I. Kolesnikov – Academician of RAS, Professor
ul. Timiryazeva 16, Irkutsk 664003
Leninskie Gory 1, Moscow 119234
References
1. Bairova TA., Novikova EA, Belyalov FI, Shchedreeva EA, Ievleva KD, Kalyuzhnaya OV, et al. Frequencies of polymorphisms in the cytochrome’s P450 genes of warfarin transformation in a European population of Eastern Siberia. Acta biomedical scientifica. 2018; 3(5): 39-48. doi10.29413/ABS.2018-3.5.6 (In Russ.)
2. Lemesle G, Ducrocq G, Elbez Y, Van Belle E, Goto S, Cannon CP, et al. Vitamin K antagonists with or without longterm antiplatelet therapy in outpatients with stable coronary artery disease and atrial fibrillation: association with ischemic and bleeding events. Clin.Cardiol. 2017; 40(10): 932-939. doi:10.1002/clc.22750
3. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005; 352(22): 2285-2293. doi: 10.1056/NEJMoa044503
4. Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current stat and future challenges. Pharmacogenomics J. 2007; 7(2): 99-111. doi: 10.1038/sj.tpj.6500417
5. Loebstein R, Yonath H, Peleg D, Almog S, Rotenberg M, Lubetsky A, et al. Interindividual variability in sensitivity to warfarin – Nature or nurture? Clin Pharmacol Ther. 2001; 70(2): 159-164. doi: 10.1067/mcp.2001.117444
6. Ayesh BM, Abu Shaaban AS, Abed AA. Evaluation of CYP2C9- and VKORC1-based pharmacogenetic algorithm for warfarin dose in Gaza-Palestine. Future Science OA, 2018; 4(3): FSO276. doi:10.4155/fsoa-2017-0112
7. Rychkova LV, Bairova TA, Novikova EA, Sargaeva DS, Ievleva KD, Kalyuzhnaya OV, et al. Prediction of bleeding complications during warfarin intake. In: Poster Session 2. European Journal of Preventive Cardiology. 2018; 25 (2suppl): S72-S105. doi: 10.1177/2047487318786182
8. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002; 287(13): 1690-1698. doi:10.1001/jama.287.13.1690
9. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008; 84(3): 326-331. doi: 10.1038/clpt.2008.10
10. Selim TE, Azzam HA, Ghoneim HR, Mohamed AA, El Wakeel H, Abu Bakr HM. Pharmacogenetic warfarin dosing algorithms: validity in Egyptian patients. Acta Haematologica. 2018; 139(4): 255-262. doi:10.1159/000486889
11. The International Warfarin Pharmacogenetics Consortium. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009; 360: 753-764. doi: 10.1056/NEJMoa0809329
12. Shin J, Cao D. Comparison of warfarin pharmacogenetic dosing algorithms in a racially diverse large cohort. Pharmacogenomics, 2011; 12(1): 125-134. doi:10.2217/pgs.10.168
13. Kropacheva ES. Pharmacogenetics of warfarine. Aterotromboz. 2015; (1): 107-111. doi: 10.21518/2307-1109-2015-1-107-111(In Russ.)
14. Karaca S, Bozkurt NC, Cesuroglu T, Karaca M, Bozkurt M, Eskioglu E, et al. International warfarin genotype-guided dosing algorithms in the Turkish population and their preventive effects on major and life-threatening hemorrhagic events. Pharmacogenomics. 2015; 16(10): 1109-1118. doi:10.2217/pgs.15.58
Review
For citations:
Bairova T.A., Sambyalova A.Yu., Rychkova L.V., Novikova E.A., Belyalov F.I., Sargaeva D.S., Shchedreeva E.A., Ignatyeva T.G., Ershova O.A., Pustozerov V.G., Kovaleva O.A., Rasputina I.V., Noskova I.A., Batogova T.V., Kuznetsova O.V., Bogoslova O.Yu., Kolesnikov S.I. Pharmacogenetic Warfarin Dosing Algorithm in the Russian Population. Acta Biomedica Scientifica. 2019;4(3):40-44. (In Russ.) https://doi.org/10.29413/ABS.2019-4.3.5