Preview

Acta Biomedica Scientifica

Advanced search

Genetic Aspects of Pathogenesis of Congenital Spastic Cerebral Paralysis

https://doi.org/10.29413/ABS.2019-4.3.4

Abstract

Congenital spastic cerebral palsy (СР) is a large group of non-progressive disorders of the nervous system. The basis of the pathogenesis of these conditions is considered the impact of many factors. The clinical diversity of the disease and the syndromic principle of classification determine the existing uncertainties in the diagnosis of these diseases. The multifactorial nature of the underlying brain lesions is obvious and beyond doubt. The volume of information accumulated to date does not allow one to exclude the role and significance of the direct effect of acute asphyxiation in childbirth on a fetus normally formed during pregnancy, the role of infectious brain lesions, and disorders of neuronal migration. It is impossible to ignore the dependence of the clinical picture of the disease on what stage of ontogenesis the impact of the damaging agent occurs. As one of the pathogenetic factors, the genetic determinism of the phenotype of the clinical picture of a disease is fairly considered. This review focuses on the genetic aspects of the pathogenesis of this pathology. The information on monogenic mechanisms of inheritance is analyzed in detail. Such genetically determined mechanisms of pathogenesis as the inheritance of prerequisites for brain trauma in the perinatal period are considered separately. The new clinically significant variants of chromosomal mutations found in patients with CР are reviewed in detail,  the evidence of the influence of genetic factors on the development of cerebral palsy in the absence of a pronounced monogenic cause of the disease, obtained through twin studies, is reviewed.  Lit search of polymorphisms markers of predisposition to the development of cerebral palsy genes of the folate cycle, genes of glutamate receptors, the gene of apolipoprotein and of the gene for the transcription factor of oligodendrocytes (OLIG2) in Detail the role of epigenetic effects on the activity of genes coding for mitochondrial proteins.

About the Authors

A. G. Prityko
Scientific-Practical Center for Specialized Assistance for Children named after N.V. Voino-Yasenetsky of Department of Healthcare of Moscow
Russian Federation
Andrey G. Prityko – Dr. Sc. (Med.), Professor, Director ul. Aviatorov 38, Moscow 119619


N. V. Chebanenko
Scientific-Practical Center for Specialized Assistance for Children named after N.V. Voino-Yasenetsky of Department of Healthcare of Moscow
Russian Federation

Natalya V. Chebanenko – Cand. Sc. (Med.), Head of the Department of General Psychoneurology

ul. Aviatorov 38, Moscow 119619



P. L. Sokolov
Scientific-Practical Center for Specialized Assistance for Children named after N.V. Voino-Yasenetsky of Department of Healthcare of Moscow
Russian Federation

Pavel L. Sokolov – Dr. Sc. (Med.), Leading Research Officer at the Department of Radiation Diagnostics

ul. Aviatorov 38, Moscow 119619



V. P. Zykov
Department of Children’s Neurology, Russian Medical Academy of Continuing Professional Education
Russian Federation

Valery P. Zykov – Dr. Sc. (Med.), Professor, Head of the Department of Children Neurology

ul. Geroev Panfilovtsev 28, Moscow 125373



O. V. Klimchuk
Scientific-Practical Center for Specialized Assistance for Children named after N.V. Voino-Yasenetsky of Department of Healthcare of Moscow
Russian Federation

Oleg V. Klimchuk – Cand. Sc. (Med.), Head of the Department of Radiation Diagnostics

ul. Aviatorov 38, Moscow 119619



I. V. Kanivets
OOO Genomed
Russian Federation

Ilya V. Kanivets – Cand. Sc. (Med.), Geneticist, Head of the Genetics Department

Podolskoye shosse build. 8, korp. 5, Moscow 5115093



References

1. Little WJ. Course of lectures on deformities of the human frame. The Lancet. 1843; 41(1058): 318-322. doi: 10.1016/S0140-6736(02)73824-5

2. Freud S. Les diplegies cérébrales infantiles. Revue Neurologique. 1893; 1: 177-183.

3. Badalyan LO. Pediatric neurology. Moscow: Meditsina; 1984. (In Russ.)

4. Semenova KA, Makhmudova NM. Medical rehabilitation and social adaptation of patients with cerebral palsy. Tashkent: Meditsina; 1979. (In Russ.)

5. Badalyan LO, Zhurba LT, Timonina OV. Cerebral palsies. Kiev: Zdorov’ya, 1988. (in Russ.)

6. Tsuker MB. Clinical neuropathology at children’s age. Moscow: Meditsina; 1972. (In Russ.)

7. Balf C, Ingram T. Problems in the classification of cerebral palsy. Brit Med J. 1955; 2(4932): 163-166. doi: 10.1136/bmj.2.4932.163

8. Semenova KA, Mastyukova EM, Smuglin MYa. Clinic and rehabilitation therapy of cerebral palsies. Moscow: Meditsina; 1972. (In Russ.)

9. Batysheva TT, Bykova OV, Tyurina EM, Vinogradov AV. Cerebral palsy - actual review. Doktor.Ru Nevrologiya. 2012; (5): 40-44. (In Russ.)

10. Blair E, Stanley F. Intrauterine growth and spastic cerebral palsy II. The association with morphology at birth. Early Hum Dev. 1992; 28(2): 91-103. doi: 10.1016/0378-3782(92)90104-O

11. Bobath K, Bobath B. The facilitation of normal postural reactions and movements in the treatment of cerebral palsy. Physiotherapy, 1964; 50: 246-262.

12. Bi D, Chen M, Zhang X, Wang H, Xia L, Shang Q, et al. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. J. Neuroinflammation. 2014; 11: 100. doi: 10.1186/1742-2094-11-100

13. Muller D. Neurologische Untersuchung und Diagnostik im Kindesalter. Wien – New York; 1968.

14. Kozlovskaya IB. Afferent control of any movements. Moscow: Nauka; 1976. (In Russ.)

15. Bruun TUJ, DesRoches CL, Wilson D, Chau V, Nakagawa T, Yamasaki M, et al. Prospective cohort study for identification of underlying genetic causes in neonatal encephalopathy using whole-exome sequencing. Genet Med. 2018; 20(5): 486-494. doi: 10.1038/gim.2017.129

16. Lynex CN, Carr IM, Leek JP, Achuthan R, Mitchell S, Maher ER, et al. Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders. BMC Neurol. 2004; 4(1): 20. doi: 10.1186/1471-2377-4-20

17. Hyde TM, Lipska BK, Ali T, Mathew SV, Law AJ, Metitiri OE, et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci. 2011; 31(30): 1088-11095. doi: 10.1523/JNEUROSCI.1234-11.2011

18. Lerer I, Sagi M, Meiner V, Cohen T, Zlotogora J, Abeliovich D. Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet. 2005; 14(24): 3911-3920. doi: 10.1093/hmg/ddi415

19. Hangen E, Blomgren K, Benit P, Kroemer G, Modjtahedi N. Life with or without AIF. Trends Biochem Sci. 2010; 35(5): 278-287. doi: 10.1016/j.tibs.2009.12.008

20. Kakinuma N, Zhu Y, Wang Y, Roy BC, Kiyama R. Kank proteins: structure, functions and diseases. Cell Mol Life Sci. 2009; 66(16): 2651-2659. doi: 10.1007/s00018-009-0038-y

21. Moreno-De-Luca A, Helmers SL, Mao H, Burns TG, Melton AM, Schmidt KR, et al. Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet. 2011; 48(2): 141-144. doi: 10.1136/jmg.2010.082263

22. McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S, et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015; 20(2): 176-182. doi: 10.1038/mp.2014.189

23. Tollånes MC, Wilcox AJ, Lie RT, Moster D. Familial risk of cerebral palsy: population based cohort study. BMJ. 2014; 349: g 4294. doi: 10.1136/bmj.g4294

24. MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol. 2015; 213(6): 779-788. doi: 10.1016/j.ajog.2015.05.034

25. Chegodayev DA, Lvova OA, Baranov DA. Cerebral palsy – genetic aspects of pathogenesis. Sistemnaya integratsiya v zdravookhranenii. 2012; (3): 52-60. (In Russ.)

26. Hou R, Ren X, Wang J, Guan X. TNF-α and MTHFR polymorphisms associated with cerebral palsy in Chinese infants. Mol Neurobiol. 2016; 53(10): 6653-6658. doi: 10.1007/s12035-015-9566-7

27. Nelson KB, Dambrosia JM, Iovannisci DM, Cheng S, Grether JK, Lammer E. Genetic polymorphisms and cerebral palsy in very preterm infants. Pediatr Res. 2005; 57(4): 494-499. doi:10.1203/01.PDR.0000156477.00386.E7

28. Lien E, Andersen G, Bao Y, Gordish-Dressman H, Skranes JS, Blackman JA, Vik T. Genes determining the severity of cerebral palsy: the role of single nucleotide polymorphisms on the amount and structure of apolipoprotein E. Acta Paediatr. 2015; 104(7): 701-706. doi: 10.1111/apa.12983

29. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci USA. 2006; 103(15): 5644-5651. doi: 10.1073/pnas.0600549103

30. Ebrahimi-Fakhari D, Behne R, Davies AK, Hirst J. AP-4-associated hereditary spastic paraplegia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds.). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019.

31. Baburamani AA, Supramaniam VG, Hagberg H, Mallard C. Microglia toxicity in preterm brain injury. Reprod Toxicol. 2014; 48: 106-112. doi: 10.1016/j.reprotox.2014.04.002

32. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001; 65(1): 1-105. doi: 10.1016/S0301-0082(00)00067-8

33. Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron. 1995; 15(3): 711-720. doi: 10.1016/0896-6273(95)90158-2

34. Rajatileka S, Odd D, Robinson MT, Spittle AC, Dwomoh L, Williams M, et al. Variants of the EAAT2 glutamate transporter gene promoter are associated with cerebral palsy in preterm infants. Mol Neurobiol. 2018; 55(3): 2013-2024. doi: 10.1007/s12035-017-0462-1

35. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, et al. The harlequin mouse mutation down regulates apoptosis-inducing factor. Nature. 2002; 419(6905): 367-374. doi: 10.1038/nature01034

36. Sun L, Xia L, Wang M, Zhu D, Wang Y, Bi D, et al. Variants of the OLIG2 Gene are associated with cerebral palsy in Chinese Han infants with hypoxic-ischemic encephalopathy. Neuromolecular Med. 2018; 21(3): 75-84. doi: 10.1007/s12017-018-8510-1

37. Mottahedin A, Svedin P, Nair S, Mohn CJ, Wang X, Hagberg H, et al. Systemic activation of Toll-like receptor 2 suppresses mitochondrial respiration and exacerbates hypoxic-ischemic injury in the developing brain. J Cereb Blood Flow Metab. 2017; 37(4): 1192-1198. doi:10.1177/0271678X17691292

38. Kálmán M1, Ajtai BM, Sommernes JH. Characteristics of glial reaction in the perinatal rat cortex: Effect of lesion size in the ’critical period’. Neural Plast. 2000; 7(3): 147-165.doi: 10.1155/NP.2000.147

39. Sun Y., Li T., Xie C., Xu Y., Zhou K., Rodriguez J., et al. Haploinsufficiency in the mitochondrial protein CHCHD4 reduces brain injury in a mouse model of neonatal hypoxia-ischemia. Cell Death and Disease. 2017; 8(5): 2781. doi:10.1038/cddis.2017.196

40. Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, et al. AIF deficiency compromises oxidative phosphorylation. EMBO J. 2004; 23(23): 4679-4689. doi:10.1038/sj.emboj.7600461

41. Osato K, Sato Y, Ochiishi T, Osato A, Zhu C, Sato M, et al. Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation. Cell Death Dis. 2010; 1: e 84. doi:10.1038/cddis.2010.63

42. Ishimura R, Martin GR, Ackerman SL. Loss of apoptosis-inducing factor results in cell-type specific neurogenesis defects. J Neurosci. 2008; 28(19): 4938-4948. doi: 10.1523/JNEUROSCI.0229-08.2008

43. Hangen E, Blomgren K, Benit P, Kroemer G, Modjtahedi N. Life with or without AIF. Trends Biochem Sci. 2010; 35(5): 278-287. doi: 10.1016/j.tibs.2009.12.008

44. Hangen E, Feraud O, Lachkar S, Mou H, Doti N, Fimia GM, et al. Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis. Mol Cell. 2015; 58(6): 1001-1014. doi: 10.1016/j.molcel.2015.04.020

45. Zhu C, Wang X, Huang Z, Qiu L, Xu F, Vahsen N, et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ. 2007; 14(4): 775-784. doi: 10.1038/sj.cdd.4402053

46. Youn HJ, Kim S, Jeon MH, Lee JH, Seo YJ, Lee YJ, Lee JH. Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem. 2005; 270(1-2): 13-19.

47. Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005; 17(6): 631-636. doi: 10.1016/j.ceb.2005.09.007

48. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008; 9(5): 402-412. doi: 10.1038/nrm2395

49. Hedtjarn M, Mallard C, Eklind S, Gustafson-Brywe K, Hagberg H. Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab. 2004; 24(12): 1317-1332. doi: 10.1097/01.WCB.0000141558.40491.75

50. Bolouri H, Savman K, Wang W, Thomas A, Maurer N, Dullaghan E, et al. Innate defense regulator 1018 protects against perinatal brain injury. Ann Neurol. 2014; 75(3): 395-410. doi: 10.1002/ana.24087

51. Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A. Strong neuroprotection by inhibition of NF-kappaB after neonatal hypoxia-ischemia involves apoptotic mechanisms but is independent of cytokines. Stroke. 2008; 39(7): 2129-2137. doi: 10.1161/STROKEAHA.107.504175

52. Golubev AM, Moskaleva EY, Severin SE, Vesnyanko TP, Kouzovlev AN, Alkadarsky AS, et al. Apoptosis in critical conditions. Obshchaya reanimatologiya. 2006; 2(6): 184-190. (In Russ.) doi: 10.15360/1813-9779-2006-6-184-190

53. Obermann-Borst SA, Isaacs A, Younes Z, van Schaik RH, van der Heiden IP, van Duyn CM, et al. General maternal medication use, folic acid, the MDR1 C3435T polymorphism, and the risk of a child with a congenital heart defect. Am J Obstet Gynecol. 2011; 204(3): 236.e1-8. doi: 10.1016/j.ajog.2010.10.911

54. Nijboer CH, Heijnen CJ, van der Kooij MA, Zijlstra J, van Velthoven CT, Culmsee C, et al. Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol. 2011; 70: 255-264. doi: 10.1002/ana.22413

55. Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol. 2006; 2(9): 474-479. doi: 10.1038/nchembio809

56. Svedin P, Hagberg H, Savman K, Zhu C, Carina Mallard C. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neuroscience, 2007; 27(7): 1511-1518. doi: 10.1523/JNEUROSCI.4391-06.2007

57. Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med. 2015; 21(1): 92-98. doi: 10.1038/nm.3730

58. Tabuchi TM, Rechtsteiner A, Jeffers TE, Egelhofer TA, Murphy CT, Strome S. Caenorhabditis elegans sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nat Cоmmun. 2018; 9(1): 4310. doi: 10.1038/s41467-018-06236-8


Review

For citations:


Prityko A.G., Chebanenko N.V., Sokolov P.L., Zykov V.P., Klimchuk O.V., Kanivets I.V. Genetic Aspects of Pathogenesis of Congenital Spastic Cerebral Paralysis. Acta Biomedica Scientifica. 2019;4(3):28-39. (In Russ.) https://doi.org/10.29413/ABS.2019-4.3.4

Views: 1248


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9420 (Print)
ISSN 2587-9596 (Online)