ОПТИЧЕСКАЯ КОГЕРЕНТНАЯ ТОМОГРАФИЯ В РЕЖИМЕ АНГИОГРАФИИ В СРАВНИТЕЛЬНОМ АНАЛИЗЕ ХОРИОИДАЛЬНОЙ НЕОВАСКУЛЯРИЗАЦИИ ПРИ ПАТОЛОГИЧЕСКОЙ МИОПИИ И НЕОВАСКУЛЯРНОЙ ВОЗРАСТНОЙ МАКУЛЯРНОЙ ДЕГЕНЕРАЦИИ НА ФОНЕ ОСЕВОЙ МИОПИИ

Дроздова Е.А.¹, Жиляева О.В.², Сусло И.С.²

¹ ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Минздрава России (454092, г. Челябинск, ул. Воровского, 64, Россия)

² ООО «ПолиКлиника» (454100,

г. Челябинск, ул. 40-летия Победы, 11, неж. пом. 1, Россия)

Автор, ответственный за переписку: Жиляева Ольга Васильевна, e-mail: zhild@mail.ru

РЕЗЮМЕ

Обоснование. Оптическая когерентная томография в режиме ангиографии (OKTA) на современном этапе является важным методом визуализации и оценки патологии глазного дна при различных заболеваниях. Исследование сочетанных патологий освещено недостаточно.

Цель исследования. Сравнить ОКТА-особенности в течении хориоидальной неоваскуляризации (ХНВ) при патологической миопии (ПМ) и при неоваскулярной возрастной макулярной дегенерации в сочетании с осевой миопией (нВМД + М) на фоне антиангиогенной терапии.

Методы. В проспективное исследование включено 70 глаз с активной ХНВ. Сравнительный анализ параметров проведён между двумя группами: с ПМ – 47 глаз; с нВМД + М – 23 глаза.

Результаты. Установлено 4 ОКТА-рисунка (паттерна) в обеих группах – плотный, разреженный, смешанный и неидентифицируемый. При ПМ плотный паттерн выявлен в 28 (59,57 %) глазах, разреженный – в 16 (34,04 %), смешанный – в 2 (4,26 %), неидентифицируемый – в 1 (2,13 %). В группе нВМД + М плотный паттерн встречался редко – в 1 (4,35 %) глазу, разреженный – в 7 (30,44 %), смешанный – в 9 (39,13 %), неидентифицируемый – в 6 (26,08 %). Для первой группы был характерен плотный паттерн, который встречался в более молодом возрасте, для второй группы – плотный и смешанный паттерны. Наибольшие площадь и плотность ХНВ выявлены при разреженном паттерна с обеих группах (р < 0,05). Период наблюдения до достижения стабилизации ХНВ был больше при разреженном и смешанном паттернах в группе ПМ, при разреженном и неидентифицируемый паттерны требуют большего количества инъекций. Гало определялось при наличии интраретинальной жидкости в сетчатке.

Заключение. ОКТА показала общие черты и отличительные особенности в течении ХНВ у пациентов с ПМ и нВМД + М при антиангиогенной терапии. ОКТА может быть полезной в оценке активности ХНВ и прогнозировании эффекта лечения.

Ключевые слова: оптическая когерентная томография-ангиография, патологическая миопия, возрастная макулярная дегенерация, хориоидальная неоваскуляризация, анти-VEGF терапия, антиангиогенная терапия

Для цитирования: Дроздова Е.А., Жиляева О.В., Сусло И.С. Оптическая когерентная томография в режиме ангиографии в сравнительном анализе хориоидальной неоваскуляризации при патологической миопии и неоваскулярной возрастной макулярной дегенерации на фоне осевой миопии. *Acta biomedica scientifica*. 2021; 6(6-1): 128-135. doi: 10.29413/ABS.2021-6.6-1.15

Статья поступила: 31.08.2021 Статья принята: 22.11.2021 Статья опубликована: 28.12.2021

Ophthalmology

OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FOR CHOROIDAL NEOVASCULARIZATION IN PATHOLOGICAL MYOPIA AND NEOVASCULAR AGE-RELATED MACULAR DEGENERATION IN COMBINATION WITH AXIAL MYOPIA IN COMPARATIVE ANALYSIS

Drozdova E.A.¹, Zhiliaeva O.V.², Suslo I.S.²

 ¹ South-Ural State Medical University (Vorovskogo str. 64, Chelyabinsk 454092, Russian Federation)
² OOO "PoliKlinika" (40-letiya Pobedy str. 11, non-residential premises 1, Chelyabinsk 454100, Russian Federation)

Corresponding author: Olga V. Zhiliaeva, e-mail: zhild@mail.ru

ABSTRACT

Background. Optical coherence tomography angiography (OCTA) is currently an important method of visualization and assessment of fundus pathology in various diseases. The study of combined pathologies is not well covered.

The aim: to compare OCTA features during choroidal neovascularization (CNV) in pathological myopia (PM) and in neovascular age-related macular degeneration in combination with axial myopia (nAMD + M) against the background of anti-VEGF therapy.

Materials and methods. A prospective study included 70 eyes with active CNV. Comparative analysis of parameters was carried out between two groups: with PM - 47 eyes; with nAMD + M - 23 eyes.

Results. 4 OCTA patterns were established in both groups: dense, loose, mixed and unidentifiable. With PM, dense pattern was found in 28 (59.57%) eyes, loose pattern – in 16 (34.04%), mixed pattern – in 2 (4.26%), unidentifiable pattern – in 1 (2.13%). In the nAMD + M group, dense pattern was rare – in 1 (4.35%) eye, loose pattern – in 7 (30.44%), mixed pattern – in 9 (39.13%), unidentifiable pattern – in 6 (26.08%). The first group was characterized by a dense pattern that was found at a younger age, the second group was characterized by dense and mixed patterns. The greatest area and density of CNV were found with a loose pattern in both groups (p < 0.05). The observation period until the stabilization of CNV was achieved was longer in the loose and mixed patterns in the PM group, and in the loose and unidentifiable – in the nAMD + M group (p < 0.05). Loose and unidentifiable patterns require more injections. The halo was determined by the presence of intraretinal fluid in the retina. **Conclusion.** OCTA showed common features and distinctive features in the course of CNV in patients with PM and nAMD + M during anti-VEGF therapy. OCTA can be useful in assessing CNV activity and predicting the effect of treatment.

Key words: optical coherence tomography angiography, pathological myopia, agerelated macular degeneration, choroidal neovascularization, anti-VEGF therapy, antiangiogenic therapy

Received: 31.08.2021 Accepted: 22.11.2021 Published: 28.12.2021 **For citation:** Drozdova E.A., Zhiliaeva O.V., Suslo I.S. Optical coherence tomography angiography for choroidal neovascularization in pathological myopia and neovascular age-related macular degeneration in combination with axial myopia in comparative analysis. *Acta biomedica scientifica*. 2021; 6(6-1): 128-135. doi: 10.29413/ABS.2021-6.6-1.15

ОБОСНОВАНИЕ

Хориоидальная неоваскуляризация (ХНВ) представляет собой неспецифический патологический процесс ангиогенеза в оболочках заднего полюса глаза, который при отсутствии лечения неизбежно приводит к необратимой потере центрального зрения [1, 2]. Наиболее частой причиной развития ХНВ является неоваскулярная возрастная макулярная дегенерация (нВМД), реже – патологическая миопия (ПМ), поствоспалительная и идиопатическая XHB. В патогенезе формирования неоваскулярной мембраны ведущее значение имеют локальная ишемия тканей и повышение концентрации фактора роста эндотелия сосудов (VEGF, vascular endothelial growth factor). Наиболее оправданным и эффективным способом лечения ХНВ при различных патологических состояниях общепризнано проведение интравитреальной анти-VEGF терапии. Режимы терапии и длительность лечения имеют свои особенности при каждом из этих заболеваний, что может быть связано как с морфологией тканей и кровоснабжением заднего полюса глаза, так и со структурной характеристикой ХНВ. Доказано, что при развитии осевой миопии увеличение переднезадней оси (ПЗО) глаза ассоциируется с уменьшением толщины хориоидеи, которая непосредственно является источником роста сети неоваскулярных сосудов [3, 4]. В настоящее время для детального исследования морфологии оболочек глаза и неоваскулярного комплекса применяются оптическая когерентная томография (ОКТ) и ОКТ-ангиография (ОКТА) [5, 6, 7]. Несмотря на большое количество публикаций, посвящённых отдельным нозологиям, практически не представлены исследования пациентов при сочетании патологий в глазу [8, 9, 10].

ЦЕЛЬ ИССЛЕДОВАНИЯ

Определение паттернов неоваскулярной мембраны и особенностей ответа на анти-VEGF терапию у пациентов с сочетанием в глазу нВМД и осевой миопии средней и высокой степени в сравнении с миопической ХНВ посредством ОКТ-ангиографии.

методы

Проведено проспективное исследование с участием 66 человек (70 глаз) с впервые выявленной активной ХНВ. Согласно цели исследования, пациенты были распределены в две группы: первая группа – 47 глаз с ПМ (4 мужчины, 39 женщин; у 4 человек – бинокулярное поражение); вторая группа – 23 глаза с нВМД + М (5 мужчин, 18 женщин).

Патологическую миопию, осложнённую ХНВ, определяли согласно классификации К. Ohno-Matsui (2015): критерием ПМ являлось наличие на глазном дне атрофических изменений, равных или более серьёзных, чем диффузная атрофия (категории 2–4), или наличие «плюс»-изменений, или наличие задней стафиломы [11].

Согласно данным номенклатуры нВМД Американской академии офтальмологии от 2019 г. [12], в нашем исследовании не учитывали термин «макулярная неоваскуляризация» и использовали термин «хориоидальная неоваскуляризация» для обозначения поздней стадии экссудативной ВМД, т. к. рассматривали исключительно 1-й, 2-й типы и смешанный 1-й и 2-й тип XHB. Пациентам проводилось стандартное офтальмологическое обследование. Общими критериями исключения служили наличие других заболеваний сетчатки, оперативные вмешательства на глазу (кроме экстракции катаракты) и интравитреальные инъекции, глаукома, сахарный диабет, нечёткость изображений. ОКТА осуществляли на аппарате RTVue XR Avanti (Optovue, США). Проводился анализ морфометрических ОКТ-показателей при центральной фиксации взгляда пациента в фовеальной зоне аксиальных и фронтальных (En Face) сканов, в том числе в режимах Angio Retina, Angio Analytics (зона сканирования 3 × 3 мм). ОКТА осуществлялась в режиме Angio Retina путём визуализации кровеносных сосудов посредством алгоритма SSADA (split-spectrum amplitude-decorrelation angiography) – амплитудной декорреляции с разделением спектра. Параметры ОКТА анализировали послойно: в поверхностном (Seperficial) и глубоком (Deep) слоях, наружных слоях сетчатки (Outer Retina), слое хориокапиллярис (Choriocapillaris). Антиангиогенную терапию проводили препаратом Ранибизумаб 0,05 мг (Lucentis, № ЛСР-004567/08 от 16.06.2008, Novartis Pharma (Швейцария)) интравитреально: при патологической миопии – в режиме 1 + PRN (pro-re-nata), у пациентов с неоваскулярной ВМД на фоне осевой миопии – в режиме 3 + PRN, затем – при признаках активации ХНВ. Активность ХНВ оценивалась исходно посредством флуоресцентной ангиографии (ФАГ) – ликедж флуоресцеина; спектральной ОКТ – по наличию экссудативных изменений: интраретинальной (ИРЖ), субретинальной жидкости (СРЖ), экссудативной отслойке пигментного эпителия (ЭОПЭ).

Период наблюдения составил от 6 до 58 месяцев, в среднем – 28,12 (18,36; 39,02) месяца.

Статистический анализ параметров проведён с использованием программ Excel, IBM SPSS Statistics 19 (Microsoft Corp., США); расчётные показатели – медиана (Me) и интерквартильный размах (IQR, interquartile range). При сравнении переменных использовали критерий Манна – Уитни. Для анализа корреляционной связи использовали коэффициент корреляции Спирмена. Статистически значимыми считали различия при *p* < 0,05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исходные показатели гендерно-полового состава и данные клинико-инструментальных параметров представлены в таблице 1.

По данным таблицы 1 видно, что в группе ПМ пациенты существенно моложе, миопические дегенеративные изменения значительно более выражены (длина ПЗО, сферический эквивалент). Зрительные функции и пол не имели различий.

ТАБЛИЦА 1 КЛИНИКО-ИНСТРУМЕНТАЛЬНЫЕ ДАННЫЕ ПАЦИЕНТОВ ИССЛЕДУЕМЫХ ГРУПП

TABLE 1 CLINICAL AND INSTRUMENTAL CHARACTERISTICS

OF PATIENTS IN THE STUDY GROUPS

	ПМ (<i>n</i> = 47)	нВМД + М (<i>n</i> = 23)	_
Показатель	Me (IQR)	ρ
Возраст, годы	56,00 (43,00–66,00)	69,00 (67,00–79,50)	<i>p</i> < 0,001
Пол, муж./жен.	4/39	5/18	<i>p</i> = 0,055
Исходная МКОЗ	0,10 (0,04–0,30)	0,10 (0,03–0,20)	<i>p</i> = 0,301
ПЗО, мм	29,00 (27,98–29,66)	25,42 (24,25–27,55)	<i>p</i> < 0,001
Сферический эквивалент, диоптрии	-8,50 (-12,00÷-6,00)	-6,75 (-9,25÷-4,88)	<i>p</i> = 0,011

Примечание. МКОЗ – максимально корригированная острота зрения.

С помощью спектральной ОКТ в обеих группах установлен 2-й тип и смешанный 1-й и 2-й тип ХНВ, которые на горизонтальных ОКТ-сканах характеризовались обязательным наличием гиперрефлективного материала над пигментным эпителием сетчатки. На фронтальных сканах ОКТА наиболее чёткое и полное изображение сети новообразованных сосудов визуализировалось в слое Outer Retina в обеих группах, гипоинтенсивное кольцо (гало) вокруг ХНВ определялось в слое Outer Retina и более чётко – в слое Choriocapillaris вокруг артефакта ХНВ.

На основании изображений ОКТА оценивали фенотипы ХНВ по морфологическому рисунку (паттерну). Наиболее полная характеристика паттернов в нашем исследовании соответствовала описанию в отношении неоваскулярной ВМД F. Sulzbacher et al. [9]. Условно все ХНВ были разделены на 4 паттерна: плотный (клубочковый) – высокоинтенсивная гиперрефлективная (с высокой интенсивностью сигнала) сосудистая сеть с часто разветвлёнными и компактно упакованными капиллярами, минимальным межсосудистым пространством, в виде клубочка шаровидной или веретеновидной формы с чёткими контурами; разреженный (плоскостной) спутанный или упорядоченный – отдельно лежащие сосуды крупного диаметра с низким индексом ветвления, неправильной формы, с не совсем чёткими контурами, значительной долей межсосудистого пространства; смешанный – сочетание участков плотного и разреженного паттернов; неидентифицируемый – отсутствие неоваскулярных сосудов во всех слоях на изображении при исследовании ОКТА при ХНВ, подтверждённой другими методами (ОКТ, ФАГ).

При ОКТА-исследовании пациентов с миопической ХНВ были определены следующие паттерны: плотный, разреженный (в виде упорядоченного или спутанного сосудистого рисунка), смешанный и неидентифицируемый (рис. 1).

В группе нВМД + М наиболее часто встречались смешанный и неидентифицируемый паттерны, в единичных случаях – плотный и разреженный (рис. 2).

CNV patterns at PM: **a** – dense; **б** – loose (tangled); **в** – mixed; **r** – unidentifiable; **a1–r1** – horizontal scans of OCTA

РИС. 2.

Паттерны ХНВ при нВМД + М: а – плотный; б – разреженный (упорядоченный); в – смешанный; г – неидентифицируемый; а1-г1 – горизонтальные сканы ОКТА

Сравнительный анализ частоты встречаемости паттернов ХНВ при ОКТ-ангиографическом исследовании у пациентов с ПМ и нВМД + М представлен в таблице 2.

ТАБЛИЦА 2 ПАТТЕРНЫ ХНВ В ИССЛЕДУЕМЫХ ГРУППАХ, n (%) TABLE 2

CNV PATTERNS IN THE STUDY GROUPS, n (%)

Паттерн	ПМ (<i>n</i> = 47)	нВМД + М (<i>n</i> = 23)
Плотный	28 (59,57 %)	1 (4,35 %)
Разреженный	16 (34,04 %)	7 (30,44 %)
Смешанный	2 (4,26 %)	9 (39,13 %)
Неидентифицируемый	1 (2,13 %)	6 (26,08 %)
Всего	47 (100 %)	23 (100 %)

По данным таблицы 2 видно, что в группе ПМ преобладал плотный паттерн (p < 0,05), реже встречался разреженный, смешанный и неидентифицируемый – в единичных случаях. Во второй группе смешанный, разреженный и неидентифицируемый паттерны выявлены в равных долях.

Большинство паттернов в группе ПМ локализовались над пигментным эпителием сетчатки (ПЭС). В разреженном и смешанном паттернах более 50 % неоваскулярного комплекса определялось над ПЭС; сосудистая сеть в них характеризовалась более редким переплетением сосудов. В группе нВМД + М разреженный паттерн был представлен сетью сосудов под ПЭС, плотный – сетью сосудов над ПЭС. В группе нВМД + М встречались ХНВ 1-го типа (10 (43,48 %) глаз), 2-го типа и смешанного 1-го и 2-го типа, однако все смешанные ХНВ ввиду наличия компонента выше пигментного эпителия были отнесены нами ко 2-му типу (13 (56,52 %) глаз).

CNV patterns at nAMD + M: \mathbf{a} – dense; $\mathbf{6}$ – loose (regularized); B – mixed; r – unidentifiable; a1–r1 – horizontal scans of OCTA

Для выявления клинических особенностей при определённом морфологическом рисунке XHB на ОКТА у пациентов в исследуемых группах мы провели сравнение паттернов с учётом возраста, зрительных функций, площади ХНВ и плотности сосудистой сети в ней (табл. 3).

По данным таблицы 3, при анализе особенностей фенотипов выявлен статистически значимо более молодой возраст при плотном паттерне в первой группе и при плотном и смешанном паттернах – во второй группе. Все параметры общей выборки имеют статистически значимые различия между исследуемыми группами. Исходные значения МКОЗ не различались между группами и в зависимости от паттерна. Наибольшие площадь и плотность ХНВ выявлены при разреженном паттерне в обеих группах (*p* < 0,05).

Часто выявляемым признаком при ОКТА является гипоинтенсивный ободок (гало) вокруг ХНВ. Гало считают признаком активности XHB (ранее описано как область, соответствующая локальному нарушению кровотока) [13]. Мы изучали наличие гало на изображениях ОКТА при различных морфологических проявлениях экссудации на ОКТ: интраретинальной жидкости, субретинальной жидкости, наличии кистовидных изменений в сетчатке, экссудативной отслойке пигментного эпителия (ЭОПЭ), а также при визуализации субретинального гиперрефлективного материала (СГРМ). Гало всегда присутствовало только при ИРЖ в виде отёка нейроэпителия сетчатки (прямая корреляция: r = 0,624; p = 0,009). Тёмный ободок обнаруживали в слое Choriocapillaris в том числе при отсутствии подтверждения признаков ХНВ на ОКТА, ОКТ. В нашем исследовании это было выявлено случайно в двух глазах (в 1 – при ПМ, в 1 – при нВМД + М), в обоих случаях за 3 и 4 мес. соответственно до появления впоследствии ХНВ и одновременно на изображениях ОКТА и ОКТ.

В конце периода наблюдения оценивали остроту зрения, морфологические параметры ХНВ при ОКТА и количество антиангиогенных инъекций, которое потребовалось для достижения стабилизации процесса (табл. 4).

ТАБЛИЦА З СРАВНИТЕЛЬНЫЙА! ДЛЯ ОТРАЖЕНИЯ ТЕ'	НАЛИЗ ПАТТЕР ЧЕНИЯ ХНВ	НОВ ПРИ ОКТА	висследуем	ЫХ ГРУППАХ	T A B L E	3 ATIVE ANALYSIS 3SE OF CNV IN O	OF PATTERN! CTA	S IN THE STUDY	GROUPS TO RE	FLECT
	Плоп	НЫЙ	Разреже	енный	Смеша	нный	Неидентифі	ицируемый	Bce	ŗo
Показатели	ПМ (<i>n</i> = 28)	нВМД + М (<i>n</i> = 1)	ПМ (<i>n</i> = 16)	нВМД + М (<i>n</i> = 7)	ПМ (<i>n</i> = 2)	нВМД + М (<i>n</i> = 9)	ПМ (1 = 1)	нВМД + М (<i>n</i> = 6)	ПМ (<i>n</i> = 47)	нВМД + М (<i>n</i> = 23)
Возраст, лет	53,00 (43,00– 61,00)*	66,00 (54,00– 71,00)*	59,00 (52,00– 64,00)	77,00 (68,00– 83,00)	59,00 (51,00– 62,00)	67,00 (59,00– 73,00)*	23,00 (-)	79,00 (78,00–81,00)	56,00 (48,00–65,00)	69,00 (65,00–77,50)
MK03	0,10 (0,05–0,20)	0,10 (0,04–0,20)	0,10 (0,02–0,20)	0,10 (0,02–0,30)	0,10 (0,03–0,20)	0,10 (0,04–0,30)	0,10 (0,02–0,20)	0,10 (0,01–0,10)	0,10 (0,04–0,30)	0,10 (0,03–0,20)
Площадь ХНВ, мм ²	0,813 (0,615–0,987)	0,618 (0,534–0,846)	1,4848 (1,156–1,632)*	6,619 (2,315– 10,767)*	1,215 (0,915–1,198)	2,377 (1,835–4,576)	I	I	0,931 (0,136–1,221)	3,295 (0,389–7,617)
Плотность ХНВ, мм ²	0,296 (0,097–0,456)	0,292 (0,113–0,416)	0,695 (0,345–0,968)*	2,577 (1,514–5,523)*	0,346 (0,267–0,454)	1,644 (1,367–1,854)	I	I	0,393 (0,098–0,403)	1,439 (0,236–3,659)
ТАБЛИЦА 4 СРАВНИТЕЛЬНЫЙА В КОНЦЕ ПЕРИОДА I	НАЛИЗ ПАТТЕР НАБЛЮДЕНИЯ	чНОВ ПРИ ОКТ <i>А</i>	и в исследуем	ЫХ ГРУППАХ	T A B L E COMPAR OF THE O	4 ATIVE ANALYSIS BSERVATION PE	OF PATTERN	S IN THE STUDY	GROUPS AT TH	IE END
	Ċ	лотный	Разре	эженный	Смен	ланный	Неидентиф	уицируемый	Bce	iro
Показатели	TIM (n = 28)	нВМД + М (<i>n</i> = 1)	ПМ (<i>n</i> = 16)	нВМД + М (<i>n</i> = 7)	ΠM (<i>n</i> = 2)	нВМД + М (<i>n</i> = 9)	ПМ (<i>n</i> = 1)	нВМД + М (<i>n</i> = 6)	ПМ (<i>n</i> = 47)	нВМД + М (<i>n</i> = 23)
MKO3	0,25 (0,05–0,30	0,40 (0,10–0,50)	0,30 (0,03–0,40)	0,35 (0,10–0,60)	0,20 (0,04–0,40)	0,45 (0,15–0,60)	0,10 (0,02–0,30)	0,20 (0,05–0,30)	0,25 (0,05–0,20)	0,40 (0,10–0,60)
Площадь ХНВ, мм ²	0,367 (0,255–0,53	0,212 7) (0,118–0,24	0, 858 3 (0,453–0,982)	2,730 * (1,312–4,237)*	0,475 • (0,389–1,105)	1,255 (0,293–1,405)	I	I	0,239 (0,155–0,332)	0,923 (0,223–1,105)
Плотность ХНВ, мм ²	0,056 (0,34–0,112	0,154 2) (0,067–0,26 ²	0,237 1) (0,156–0,476)	0,953 * (0,256–2,573)*	0,097 • (0,064–0,157)	0,274 (0,174–0,680)	I	I	0,086 (0,071–0,122)	0,186 (0,123–0,480)
Количество инъекций	i, n 3,55 (2,35–4,20)	5,60) (4,35–6,20)	4,30 (2,90–5,40)	6,55 (5,90–8,20)	3,40 (2,45–4,00)	6,55 (5,90–8,20)	2,00 (-)	9,80 (6,20–9,70)*	3,70 (2,55–4,60)	7,90 (5,35–9,95)
Период терапии, мес.	22,10 (10,30–32,00	24,15 3)* (17,36–34,02	28,20 2) (18,30–39,40)	39,25) (26,25–48,40)*	27,60 (16,55–35,30)	27,60 (15,40–29,28)*	14,00 (–)	36,30 (27,60–44,70)*	26,10 (12,35–35,00)	30,10 (19,70–39,10)
Примечание. * –статистическая зн	ачимость параметра в пр	еделах своей группы (<i>p</i> <	0,05); МКОЗ — максимальн	ю корригированная остро	та зрения.					

Офтальмология

133

Ophthalmology

TABLE 3

По данным таблицы 4 видно, что при ПМ потребовалось относительно большее количество инъекций для стабилизации ХНВ при разреженном паттерне, при нВМД + М – значительно большее количество при разреженном и неидентифицируемом паттернах, причём оба эти паттерна включали в основном XHB 1-го типа (3 и 6 глаз соответственно). S. Mrejen et al. paнее сообщали, что при неоваскулярной ВМД из всех вариантов XHB наиболее часто встречается XHB 1-го типа (от 60 до 85 % ХНВ), остальные 15-40 % приходятся на другие типы [14]. В нашем исследовании доля XHB 1-го типа в группе нВМД + М составила менее 44 %, ХНВ 2-го типа установлена более чем в 56 % случаев, что можно объяснить влиянием длины ПЗО и чертами сходства с течением ХНВ при ПМ. Наибольшие площадь и плотность XHB в конце периода наблюдения остаются при разреженном паттерне в обеих группах (p < 0,05). В первой группе длительность периода терапии относительно больше при разреженном и смешанном паттернах, во второй группе – значительно дольше при разреженном и неидентифицируемом. Результаты нашего исследования совпадают с данными F. Sulzbacher et al. [9]. В своей работе авторы предположили, что разреженный паттерн, в котором чаще встречаются сосуды крупного калибра, состоит из более зрелых, длительно существующих и выстланных перицитами сосудов, в связи с чем такие ХНВ более устойчивы к антиангиогенной терапии.

ЗАКЛЮЧЕНИЕ

На течение ХНВ в группе нВМД + М оказывает влияние длина ПЗО, что объясняет общие черты с группой ПМ. При нВМД + М высока доля ХНВ 2-го типа (56,52 %). Для ПМ и нВМД + М плотный паттерн характеризуется более молодыми незрелыми неоваскулярными сосудами, разреженный – длительно существующими сосудами крупного калибра. Площадь и плотность ХНВ статистически значимо больше при разреженном паттерне у пациентов с ПМ и нВМД + М. Более зрелые сосуды с большим диаметром слабее реагируют на антиангиогенную терапию независимо от причины заболевания – ПМ или нВМД + М. При нВМД + М наружные слои сетчатки над ПЭС (2-й тип ХНВ) вовлекаются в неоангиогенез в более молодом возрасте, и стабилизация ХНВ при нВМД + М требует значительно большее количество инъекций анти-VEGF терапии при неидентифицируемом паттерне. Гало коррелирует с наличием интраретинальной жидкости в сетчатке.

Конфликт интересов

Авторы данной статьи сообщают об отсутствии конфликта интересов

Выражение признательности

Авторы статьи выражают благодарность Шаимовой Венере Айратовне, доктору медицинских наук, главному врачу ООО «Центр зрения», г. Челябинск.

ЛИТЕРАТУРА

 Либман Е.С., Калеева Э.В., Рязанов Д.П. Комплексная характеристика инвалидности вследствие офтальмологии в Российской Федерации. *Российская офтальмология онлайн*. 2012; 5: 24-26.

2. Ikuno Y. Overview of the complications of high myopia. *Retina*. 2017; 37(12): 2347-2351. doi: 10.1097/IAE.000000000001489

3. Аветисов С.Э., Будзинская М.В., Жабина О.А., Андреева И.В., Плюхова А.А., Кобзова М.В., и др. Анализ изменений центральной зоны глазного дна при миопии по данным флюоресцентной ангиографии и оптической когерентной томографии. *Вестник офтальмологии*. 2015; 131(4): 38-48. doi: 10.17116/oftalma2015131438-48

4. Зайцева Н.В., Щуко А.Г., Юрьева Т.Н., Шевела Е.Я., Григорьева А.В. Прогностические признаки эффективности антиангиогенной терапии у пациентов с миопической хориоидальной неоваскуляризацией. Современные технологии в офтальмологии. 2017; 1(14): 89-91.

5. Панова И.Е., Шаимов Т.Б., Шаимова В.А. Неинвазивная диагностика полипоидной хориоидальной васкулопатии как варианта течения возрастной макулярной дегенерации. *Офтальмология*. 2018; 15(2S): 273-280. doi: 10.18008/1816-5095-2018-2S-273-280

6. Будзинская М.В., Педанова Е.К. Современные подходы к диагностике и ведению пациентов с влажной формой возрастной макулярной дегенерации. Эффективная фармакотерапия. Офтальмология. 2018; 2(22): 26-30.

 Нероев В.В., Охоцимская Т.Д., Фадеева В.А. Оценка микрососудистых изменений сетчатки при сахарном диабете методом ОКТ-ангиографии. *Российский офтальмологический журнал.* 2017; 10(2): 40-47.

8. Bruyère E, Miere A, Cohen SY, Martiano D, Sikorav A, Popeanga A, et al. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography. *Retina*. 2017; 37(11): 2095-2101. doi: 10.1097/IAE.000000000001456

9. Sulzbacher F, Pollreisz A, Kaider A, Kickinger S, Sacu S, Schmidt-Erfurth U. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. *Acta Ophthalmol*. 2017; 95(4): 414-420. doi: 10.1111/aos.13364

10. Faatz H, Farecki ML, Rothaus K, Gunnemann F, Gutfleisch M, Lommatzsch A, et al. Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: Evaluation of a new quantitative method. *Eye*. 2019; 33: 1466-1471. doi: 10.1038/s41433-019-0429-8

11. Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM, Verhoeven VJ, et al. International photographic classification and grading system for myopic maculopathy. *Am J Ophthalmol.* 2015; 159: 877-883.e7. doi: 10.1016/j.ajo.2015.01.022

12. Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. *Ophthalmology*. 2020; 127(5): 616-636. doi: 10.1016/ j.ophtha.2019.11.004

13. Coscas F, Lupidi M, Boulet JF, Sellam A, Cabral D, Serra R, et al. Optical coherence tomography angiography in exudative

age-related macular degeneration: A predictive model for treatment decisions. *Br J Ophthalmol*. 2019; 103(9): 1342-1346. doi: 10.1136/bjophthalmol-2018-313065

14. Mrejen S, Sarraf D, Mukkamala SK, Freund KB. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. *Retina*. 2013; 33(9): 1735-1762. doi: 10.1097/IAE.0b013e3182993f66

REFERENCES

1. Libman ES, Kaleeva EV, Ryazanov DP. Complex characteristics of disability due to ophthalmology in the Russian Federation. *Rossiyskaya oftal'mologiya onlayn*. 2012; 5: 24-26. (In Russ.).

2. Ikuno Y. Overview of the complications of high myopia. *Retina*. 2017; 37(12): 2347-2351. doi: 10.1097/IAE.000000000001489

3. Avetisov SE, Budzinskaya MV, Zhabina OA, Andreeva IV, Plyukhova AA, Kobzova MV, et al. Fluorescein angiography and optical coherence tomography findings in central fundus of myopic patients. *The Russian Annals of Ophthalmology.* 2015; 131(4): 38-48. (In Russ.). doi: 10.17116/oftalma2015131438-48

4. Zaitseva NV, Shchuko AG, Iureva TN, Shevela EY., Grigorieva AV. Prognostic signs of the effectiveness of antiangiogenic therapy in patients with myopic choroidal neovascularization. *Modern Technologies in Ophthalmology*. 2017; 1(14): 89-91. (In Russ.).

5. Panova IE, Shaimov TB, Shaimova VA. Non-invasive diagnosis of polypoid choroidal vasculopathy as a variant of the course of age-related macular degeneration. *Ophthalmology in Russia*. 2018; 15(2S): 273–280. (In Russ.). doi: 10.18008/1816-5095-2018-2S-273-280

6. Budzinskaya MV, Pedanova EK. Modern approaches to the diagnosis and management of patients with wet age-related macular degeneration. *Effective Pharmacotherapy*. *Ophthalmology*. 2018; 2(22): 26-30. (In Russ.).

7. Neroev VV, Okhotsimskaya TD, Fadeeva VA. An account of retinal microvascular changes in diabetes acquired by OCT-

angiography. *Russian Ophthalmological Journal*. 2017; 10(2): 40-47. (In Russ.).

8. Bruyère E, Miere A, Cohen SY, Martiano D, Sikorav A, Popeanga A, et al. Neovascularization secondary to high myopia imaged by optical coherence tomography angiography. *Retina*. 2017; 37(11): 2095-2101. doi: 10.1097/IAE.000000000001456

9. Sulzbacher F, Pollreisz A, Kaider A, Kickinger S, Sacu S, Schmidt-Erfurth U. Identification and clinical role of choroidal neovascularization charactesristics based on optical coherence tomography angiography. *Acta Ophthalmol*. 2017; 95(4): 414-420. doi: 10.1111/aos.13364

10. Faatz H, Farecki ML, Rothaus K, Gunnemann F, Gutfleisch M, Lommatzsch A, et al. Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: Evaluation of a new quantitative method. *Eye*. 2019; 33: 1466-1471. doi: 10.1038/s41433-019-0429-8

11. Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM, Verhoeven VJ, et al. International photographic classification and grading system for myopic maculopathy. *Am J Ophthalmol.* 2015; 159: 877-883.e7. doi: 10.1016/j.ajo.2015.01.022

12. Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. *Ophthalmology*. 2020; 127(5): 616-636. doi: 10.1016/ j.ophtha.2019.11.004

13. Coscas F, Lupidi M, Boulet JF, Sellam A, Cabral D, Serra R, et al. Optical coherence tomography angiography in exudative age-related macular degeneration: A predictive model for treatment decisions. *Br J Ophthalmol.* 2019; 103(9): 1342-1346. doi: 10.1136/bjophthalmol-2018-313065

14. Mrejen S, Sarraf D, Mukkamala SK, Freund KB. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. *Retina*. 2013; 33(9): 1735-1762. doi: 10.1097/IAE.0b013e3182993f66

Сведения об авторах

Дроздова Елена Александровна – доктор медицинских наук, профессор, доцент кафедры глазных болезней, ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Минздрава России, https://orcid.org/0000-0002-1799-211X

Жиляева Ольга Васильевна – врач-офтальмолог, ООО «ПолиКлиника», e-mail: zhild@mail.ru, https://orcid.org/0000-0003-4315-5507 Сусло Ирина Сергеевна – врач-офтальмолог, ООО «ПолиКлиника», https://orcid.org/0000-0002-9400-2917

Information about the authors

Elena A. Drozdova – Dr. Sc. (Med.), Professor, Associate Professor at the Department of Eye Diseases, South Ural State Medical University, https://orcid.org/0000-0002-1799-211X *Olga V. Zhiliaeva* – Ophthalmologist, 000 "PoliKlinika", e-mail: zhild@mail.ru, https://orcid.org/0000-0003-4315-5507 *Irina S. Suslo* – Ophthalmologist, 000 "PoliKlinika", https://orcid.org/0000-0002-9400-2917

Вклад авторов

Дроздова Е.А. — концепция и дизайн исследования, редактирование текста. Жиляева О.В. — сбор и обработка материала, статистическая обработка, написание текста, подготовка иллюстраций. Сусло И.С. — написание текста, подготовка иллюстраций.

Статья опубликована в рамках Всероссийской научно-практической конференции с международным участием «VIII Байкальские офтальмологические чтения «Визуализация в офтальмологии. Настоящее и будущее».