MICROBIOLOGY AND VIROLOGY

BIOLOGICAL PROPERTIES AND GENETIC STRUCTURE OF CLINIC ISOLATES OF *KLEBSIELLA PNEUMONIAE* SPECIES

Belkova N.L.¹, Klimenko E.S.¹, Nemchenko U.M.¹, Grigorova E.V.¹, Sitnikova K.O.¹, Zugeeva R.E.¹, Smurova N.E.¹, Chemezova N.N.^{1,2}, Savilov E.D.¹

 Scientific Centre for Family Health and Human Reproduction Problems (Timiryazeva str. 16, Irkutsk 664003, Russian Federation)
 Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the Russian Medical Academy of Continuing Professional Education (Yubileyny 100, Irkutsk 664049, Russian Federation)

Corresponding author: Natalia L. Belkova, e-mail: nlbelkova@gmail.com

ABSTRACT

Klebsiella pneumoniae (Kp) species complex is a genetically and ecologically diverse group of bacteria that causes a wide range of infections in humans and animals.

The aim of the study. To carry out biological characterization and genotyping based on the study of different loci of Klebsiella pneumoniae clinical isolates.

Materials and methods. The object of the study was three Klebsiella pneumoniae clinical isolates from different biotopes of patients from a regional children's multidisciplinary hospital. We used a complex of bacteriological, molecular genetic and bioinformatic methods. Genotyping of the isolates was carried out using the Pasteur Institute service for strains of the K. pneumoniae species complex.

Results. All strains were susceptible to antimicrobial drugs from carbapenem (imipenem, meropenem) and tetracycline groups (tigecycline), and demonstrated high susceptibility to the Klebsiella polyvalent bacteriophage. The antibiotic resistance of the Kp ODKB-16 and ODKB-81 isolates to seven and eight antimicrobial drugs, respectively, was registered.

Based on the results of multilocus sequence typing, all strains were assigned to Kp1 phylogroup, K2 type and differed in sequence type, scgMLST629 profile, and KL type. Kp ODKB-16 strain was identified as ST-65, scgST-11107, KL2; ODKB-07 strain – as ST-219, scgST-6401, KL125KL114; ODKB-81 strain – as ST-86, scgST-2800, KL2KL30. The virulence gene clusters AbST, CbST, YbST, SmST, and RmST have been characterized only in the genome of the Kp ODKB-16 isolate, allowing it to be characterized as highly virulent with multidrug resistance (MDR). Additionally, genes responsible for the synthesis of types 1 and 3 fimbrial adhesins were registered in all strains, and ter operon loci were identified only in Kp ODKB-16. Resistome analysis showed that all strains had 2b genotype. Plasmids were found in the genomes of Kp ODKB-81 (IncI2) and ODKB-16 (IncFIA + IncFIB + IncHI1B).

Conclusion. We used a comprehensive framework for genomic taxonomy of clinical isolates, which can contribute to the unification of global and regional peculiarities of the developing and microevolution of bacterial pathogens.

Key words: Klebsiella pneumoniae species complex, genotyping, multilocus analysis, multiple antibiotic resistance, antimicrobial drugs, virulence

Received: 28.08.2023 Accepted: 17.01.2024 Published: 26.03.2024 **For citation:** Belkova N.L., Klimenko E.S., Nemchenko U.M., Grigorova E.V., Sitnikova K.O., Zugeeva R.E., Smurova N.E., Chemezova N.N., Savilov E.D. Biological properties and genetic structure of clinic isolates of *Klebsiella pneumoniae* species. *Acta biomedica scientifica*. 2024; 9(1): 53-63. doi: 10.29413/ABS.2024-9.1.6

БИОЛОГИЧЕСКИЕ СВОЙСТВА И ГЕНЕТИЧЕСКАЯ СТРУКТУРА КЛИНИЧЕСКИХ ИЗОЛЯТОВ КОМПЛЕКСА ВИДОВ *KLEBSIELLA PNEUMONIAE*

Белькова Н.Л.¹, Клименко Е.С.¹, Немченко У.М.¹, Григорова Е.В.¹, Ситникова К.О.¹, Зугеева Р.Е.¹, Смурова Н.Е.¹, Чемезова Н.Н.¹,², Савилов Е.Д.¹

ФГБНУ «Научный центр проблем здоровья семьи и репродукции человека» (664003, г. Иркутск, ул. Тимирязева, 16, Россия)
 Иркутская государственная медицинская академия последипломного образования – филиал ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России (664049, г. Иркутск, Юбилейный, 100, Россия)

Автор, ответственный за переписку: **Белькова Наталья Леонидовна**, e-mail: nlbelkova@gmail.com

РЕЗЮМЕ

Комплекс видов Klebsiella pneumoniae (Кр) представляет собой генетически и экологически разнообразную группу бактерий, вызывающую широкий спектр инфекций у людей и животных.

Цель исследования. Биологическая характеристика и генотипирование на основе изучения разных локусов клинических изолятов Klebsiella pneumoniae. **Материалы и методы.** Объектом исследования стали три клинических изолята Кр, выделенные из разных биотопов пациентов детского многопрофильного стационара регионального уровня. В работе использован комплекс бактериологических, молекулярно-генетических и биоинформационных методов. Генотипирование изолятов проводили с использованием сервиса Института Пастера для штаммов видового комплекса К. pneumoniae.

Результаты. Все штаммы были чувствительны к антимикробным препаратам групп карбапенемы (имипенем, меропенем) и тетрациклины (тигециклин) и демонстрировали высокую чувствительность к бактериофагу клебсиелл поливалентный. У изолятов Кр ODKB-16 и ODKB-81 отмечена антибиотикорезистентность к семи и восьми антимикробным препаратам соответственно.

Согласно результатам мультилокусного типирования, все штаммы отнесены к филогруппе Кр1, имели К2-тип и различались по сиквенс-типам, профилю scgMLST629 и KL-типу. Штамм Кр ODKB-16 был определён как ST-65, scgST-11107, KL2; ODKB-07 – как ST-219, scgST-6401, KL125KL114; ODKB-81 – как ST-86, scgST-2800, KL2KL30. Кластеры генов вирулентности AbST, CbST, YbST, SmST и RmST были охарактеризованы только в геноме изолята Кр ODKB-16, что позволяет охарактеризовать его как высоковирулентный с множественной лекарственной устойчивостью (МЛУ). Дополнительно у всех штаммов выявлены гены, ответственные за синтез фимбриальных адгезинов 1-го и 3-го типов, а локусы ter-оперона – только у Кр ODKB-16. Анализ резистома показал, что все штаммы имели генотип 2b. Плазмиды были определены в геномах Кр ODKB-81 (IncI2) и ODKB-16 (IncFIA + IncFIB + IncHI1B).

Заключение. Использована комплексная схема для геномной таксономии клинических изолятов, которая может способствовать унификации глобальных и региональных особенностей возникновения и микроэволюции бактериальных патогенов.

Ключевые слова: комплекс видов Klebsiella pneumoniae, генотипирование, мультилокусный анализ, множественная антибиотикорезистентность, антимикробные препараты, вирулентность

Статья поступила: 28.08.2023 Статья принята: 17.01.2024 Статья опубликована: 26.03.2024

Для цитирования: Белькова Н.Л., Клименко Е.С., Немченко У.М., Григорова Е.В., Ситникова К.О., Зугеева Р.Е., Смурова Н.Е., Чемезова Н.Н., Савилов Е.Д. Биологические свойства и генетическая структура клинических изолятов комплекса видов *Klebsiella pneumoniae*. *Acta biomedica scientifica*. 2024; 9(1): 53-63. doi: 10.29413/ABS.2024-9.1.6

BACKGROUND

The Klebsiella pneumoniae species complex is a genetically and ecologically diverse group of bacteria causing a wide range of infections in humans and animals [1]. Considering its diversity, as well as evolutionary dynamics, multidrug resistance and virulence, typing schemes for K. pneumoniae strains are being developed [1-3]. Controversial microbial species identification and horizontal gene transfer underlie the extensive strain heterogeneity of their phenotypes, which is of ecological, medical, and/or industrial importance [4]. Obviously, the most successful taxonomic system for genetic typing of microbial strains is the multilocus sequencing approach [5, 6]. This system is used for population biology studies and surveillance of bacterial pathogens in public health [7]. Several genotyping schemes based on different loci have been developed for the K. pneumoniae species complex: proper multilocus typing (MLST, multilocus sequence typing) [8], multilocus typing by main genome (cgMLST, core genome multilocus sequence typing) [2, 3], typing by wzc and wzi genes [9], as well as multilocus typing of virulence gene clusters (AbST, CbST, YbST, SmST, RmST), and antibiotic resistance (aminoglycosides, beta-lactamases, quinolones) [2, 10, 11].

It has been previously revealed that K. pneumoniae in 23.1 % of cases acts as an etiological factor in the development of hospital purulent-septic infections in a paediatric multidisciplinary hospital at the regional level [12]. When microbiological data from clinically relevant biotopes (blood, sputum, urine, wound contents, abdominal fluid, tracheobronchial flushes, and liquor) were examined, it was revealed that blood (32.3 %) and sputum (27.1 %) had the highest frequency of microbial isolation [12]. These clinical isolates of K. pneumoniae have been experimentally observed to form biofilms with varying efficacy, showing different resistance to disinfectants and antimicrobial agents (AMAs) [13-15]. It may also be further noted that traditional methods of clinical bacteriology do not allow distinguishing strains within the K. pneumoniae species complex, which masks the true clinical significance of each sequencing type/phylogroup and their potential epidemiological features [9]. Considering this statement, the isolation biotope and multiple AMA resistance were taken into account when selecting strains for genetic typing.

THE AIM OF THE STUDY

Biological characterisation and genotyping based on different loci of three clinical isolates of *K. pneumoniae* isolated from different biotopes of patients of a regional paediatric multidisciplinary hospital.

METHODS

Three isolates of *K. pneumoniae* were studied from the clinical material of patients being treated

in the intensive care unit of a paediatric multidisciplinary hospital at the regional level (Irkutsk).

The isolates were determined according to morphological, tinctorial, culture, and biochemical properties using bioMérieux API systems (France) and confirmed by mass spectrometric analysis with the ultraflExtreme mass spectrometer (Bruker Daltonics, Germany) [16].

To assess susceptibility to AMA, bacterial suspension was prepared according to standard methodology with an optical density of 0.5 McFarland. AMA susceptibility was determined by disc-diffusion method using Mueller - Hinton medium (HiMedia, India); the results were analysed in accordance with the current regulations and interpretation tables of the European Committee on Antimicrobial Susceptibility Testing (EUCAST; version 11.0, valid from January 01, 2021) [17-19]. Strains exhibiting the R criterion were categorised as resistant, I - susceptible with increased exposure, and S - susceptible. The study included discs containing aztreonam (AZT; 30 μg), amikacin (AMK; 30 μg), amoxicillin-clavulanic acid (AMC; 20-10 μg), gentamicin (GEN; 10 μg), imipenem (IPM; 10 μg), meropenem (MER; 10 μg), netilmicin (NET; 10 μg), piperacillin-tazobactam (PIT; 30 μg – 6 μg), tigecycline (TGC; 15 μg), cefepime (CEP; 30 μg), ceftazidime (CAZ; 10 and 30 µg) (NICF LLC, Russia).

To assess the susceptibility of *K. pneumoniae* isolates to phages, a commercial preparation of bacteriophage produced by SPA (Scientific Production Association) «Microgen» (Russia) with declared activity against Klebsiella – Klebsiella polyvalent bacteriophage (20 ml vials, series U387 02.2020; Ufa) was used. Determination of the level of lytic activity (LLA) of bacteriophage to *K. pneumoniae* isolates was performed by the drop method (spot-test) [20, 21].

Whole-genome performed sequencing was on NextSeq 550 (Illumina, USA) equipment using the Illumina DNA Prep Tagmentation, IDT for Illumina DNA/RNA UD Indexes Set Tagmentation, and NextSeg 500/550 High Output Kit v2.5 (300 Cycles) library preparation reagent kits, according to the manufacturer's recommendations. Pre-contig primary data were assembled using SPAdes v. 3.11.1 [22]. Contigs were aligned against the Klebsiella pneumoniae subsp. pneumoniae HS11286 reference genome (GenBank CP003200) and corrected using MAUVE 2.4.0 (The Darling Lab, Australia) [23]. Prokka 1.14.6 (Oregon State University, USA) was used for functional annotation [24]. MOB-Typer (National Microbiology Laboratory, Canada) was used to characterize plasmids [25]. Mobile genetic elements (MGEs) (IS elements and transposons) were searched using IS-finder (France) [26].

Genotypes of isolates were determined using the Pasteur Institute database for strains of the *K. pneumoniae* species complex [27] based on MLST [8], cgM-LST [2, 3], wzc and wzi gene typing [9], and MLST clusters of virulence genes (AbST, CbST, YbST, SmST, RmST) as well as antibiotic resistance (aminoglycosides, beta-lactamases, quinolones) genes [2, 10, 11].

This study was performed within the framework of the state task No. 121022500179-0 using

the equipment of the SRF (shared research facility) «Centre for the Development of Progressive Personalized Health Technologies» and USF (Unique scientific facility) «Collection of Human Microbiota of the Irkutsk Region» (Irkutsk) of the Scientific Centre for Family Health and Human Reproduction Problems (Irkutsk).

RESULTS

A brief characterization of the analyzed *K. pneumoniae* isolates is presented in Table 1. Based on AMA susceptibility results, all strains showed resistance to more than two AMAs of different groups, but were susceptible to imipenem, meropenem (carbapenem group), and tigecycline (tetracyclines). In addition, all isolates revealed high susceptibility to *Klebsiella* polyvalent bacteriophage (Table 1). It should also be mentioned that *K. pneumoniae* isolates ODKB-16 and ODKB-81 revealed resistance to seven and eight drugs, respectively, and can be defined as multidrug resistant (MDR) strains.

A summary of the genome assembly and annotation results are summarized in Table 2. The genomes of the strains were mapped to the *Klebsiella pneumoniae* subsp. *pneumoniae* HS11286 reference genome and are shown in Figure 1. The genome sizes of the analyzed isolates varied slightly and were 5.7×10^6 , 5.3×10^6 , and 5.4×10^6 base pairs - b.p. for *K. pneumoniae* ODKB-16, *K. pneumoniae* ODKB-07, and *K. pneumoniae* ODKB-81, respectively. The guanine-cytosine (GC) composition was consistent with the characterization of the *K. pneumoniae* species. Plasmids belonging to different incompatibility groups were revealed in *K. pneumoniae* strains ODKB-16

and K. pneumoniae ODKB-81 (Table 3). It is worth noting that K. pneumoniae ODKB-81 carries Incl2 incompatibility group plasmid, while K. pneumoniae ODKB-16 carries a combined plasmid belonging to several groups simultaneously (IncFIA + IncFIB + IncHI1B), which is a characteristic feature of clinical isolates. Additionally, MOBF-type relaxase was revealed in K. pneumoniae ODKB-16 plasmid and conjugative mobility was predicted. Profages and integrons were not found in any isolate. MGEs were represented by insertional IS-elements and Tn-transposons. MGEs of the IS1380 and IS3 families were revealed in all three isolates in the chromosome. In addition, IS66 was revealed in the K. pneumoniae ODKB-7 chromosome, and IS5 and IS1 elements were revealed in K. pneumoniae ODKB-16. The MGEs of these families are small in length, ranging from 500 to 2000 bp. – and do not contain genes responsible for resistance or pathogenicity. Two MGEs of the IS481 and IS66 families, which do not carry resistance or virulence genes, were revealed in the K. pneumoniae ODKB-81 plasmid. 18 MGEs belonging to the IS1, IS3, IS4, IS5, IS6, IS21, IS66, IS110, IS481, IS630, IS1380, ISNCY, and Tn3 families were revealed in the K. pneumoniae ODKB-16 plasmid. One Tn3 MGE of the family included genes pbrR (transcription factor belonging to the MerR family), pbrA (P1Btype ATRase), pbrB (integral membrane protein), and pbrC (putative signaling peptidase). The pbrTRABCD gene cluster is thought to encode a unique, specific mechanism for lead resistance [28].

Genetic typing of *K. pneumoniae* included sequencing-type determination by MLST and cgMLST multilocus sequencing schemes, identification of markers associated with phenotypic capsule serotyping, and search for virulence and antibiotic resistance determinants.

TABLE 1

BRIEF CHARACTERIZATION OF ISOLATES OF THE K. PNEUMONIAE SPECIES COMPLEX

Isolate labeling	Isolation source (date)	Antibi	Genotype	Polyvalent Klebsiella bacteriophage	
	isolation source (date)	Susceptibility	Susceptibility Resistance		
K. pneumoniae ODKB-16	Tracheobronchial tree (November 06, 2018)	AMC20-10, IPM10, MER10, TGC15	AMK30, GEN10, NET10, PIT30-6, CEP30, CAZ10, CAZ30, AZT30	2b	3X
K. pneumoniae ODKB-07	Blood (June 21, 2018)	AMK30, GEN10, NET10, AMC20-10, PIT30-6, IPM10, CAZ30, MER10, TGC15	CEP30, CAZ10, AZT30	2b	3X
K. pneumoniae ODKB-81	Sputum NET10, AMC20-1 (October 22, 2019) IPM10, MER10, TGC15 PIT30-6, CEP30		AMK30, GEN10, NET10, AMC20-10, PIT30-6, CEP30, CAZ10, CAZ30, AZT30	2b	4X

Note. * – genotyping was performed at the following loci: blaAMPC, blaBEL, blaCARB, blaCMY, blaCTX_M, blaGES, blaIMP, blaIND, blaKPC, blaLEN, blaNDM, blaOKP_ABCD, blaOXY, blaOXY, blaPER, blaSHV, blaSME, blaTEM, blaVEB, blaVIM.

TABLE 2

SUMMARY RESULTS OF GENOME ASSEMBLY AND ANNOTATION OF GENOMES OF ISOLATES OF THE K. PNEUMONIAE SPECIES COMPLEX

Characteristics	K. pneumoniae ODKB-16	K. pneumoniae ODKB-07	K. pneumoniae ODKB-81					
Genome assembly results								
Number of readings per sample	18 689 678	23 218 431	8 283 075					
Scaffold quantity	73	66	61					
N50	293 674 308 988		308 386					
Genome annotation results								
Genome size, b.p.	5 693 553	5 333 942	5 368 963					
GC, %	56.69	57.19	57.33					
Number of protein-coding sequences	5 421	5 085	4 892					
rRNAs quantity	4	7	6					
tRNAs quantity	63	66	54					
Plasmid quantity	1	No	1					

TABLE 3

BRIEF CHARACTERIZATION OF PLASMIDS OF *K. PNEUMONIAE* SPECIES COMPLEX ISOLATES

Characteristics	K. pneumoniae ODKB-16	K. pneumoniae ODKB-81		
Size, b.p.	359 611	35 021		
GC, %	50.37	43.25		
Incompatibility groups	IncFIA+IncFIB+IncHI1B, rep_cluster_1254	Incl2		
Probable origin	Klebsiella pneumoniae	Escherichia coli		

According to the results of MLST multilocus typing for seven genes *gapA*, *infB*, *mdh*, *pgi*, *phoE*, *rpoB*, and *tonB*, all strains showed a different genotype: *K. pneumoniae* ODKB-16 was identified as ST-65, *K. pneumoniae* ODKB-07 as ST-219, *K. pneumoniae* ODKB-81 as ST-86 (Table 4). All strains were assigned to the Kp1 phylogroup, *K. pneumoniae* ODKB-16 and *K. pneumoniae* ODKB-81 were K2-type according to the *wzc* and *wzi* genes, but differed in scgM-LST629 profile and KL-type (Table 4).

The virulence profile of *K. pneumoniae* isolates was characterized using the virulence gene clusters AbST, CbST, YbST, SmST, and RmST typing at the Aerobactin, Colibactin, Ersiniabactin, Salmohelin, and RmST/RmpADC protein family loci, respectively. All virulence gene clusters were identified and characterized only in the genome of the *K. pneumoniae* isolate ODKB-16 (Table 5); their localization is presented on the mapped genome (Fig. 16).

Thus, only the *K. pneumoniae* isolate ODKB-16 can be characterised as highly virulent with MDR.

Additionally, pathogenicity determinants that are not included in the list of marker genes and their regions that are validated for typing strains of the *K. pneumoniae* species complex were searched in the genomes [27]. It is known that strains of *K. pneumoniae* complex having serotype K2 express invasive properties [9]. Genes responsible for the synthesis of fimbrial adhesins of type 1 and type 3 (*fimA* and *mrkD*, respectively) were found in the chromosome structure of the studied *K. pneumoniae* strains. However, genes responsible for the synthesis of invasins, adhesin-pili P, α-hemolysin, thermolabile enterotoxins, and for the manifestation of the hypermucoid phenotype (*rmpA* and *magA*) were not revealed. A tellurite resistance operon (TeO₃⁻², *ter* operon) was searched within the genomes, which

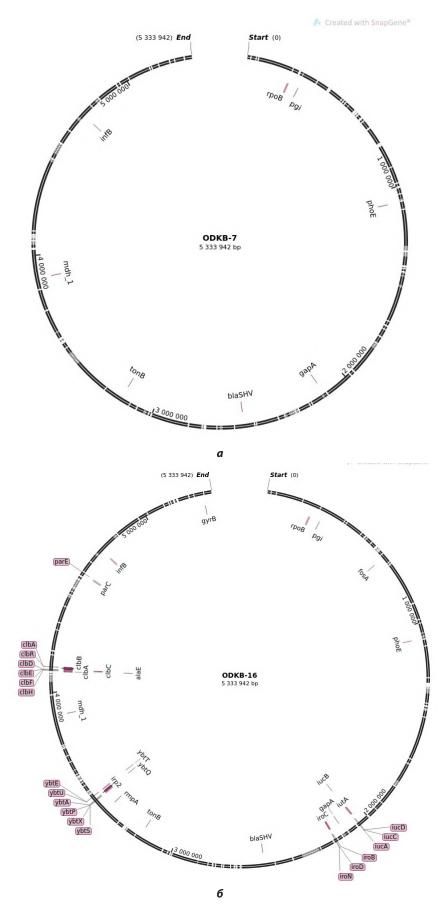


FIG. 1.

Chromosome maps of K. pneumoniae ODKB-7 (a), K. pneumoniae ODKB-16 (b), K. pneumoniae ODKB-81 (e) strains mapped to the K. pneumoniae subsp. pneumoniae HS11286 reference genome. Genes identified by MLST (gapA, infB, mdh, pgi, phoE, rpoB, and tonB) as well as MLST analysis of virulence determinants (AbST, CbST, YbST, SmST, RmST) and antibiotic resistance are indicated in the footnotes

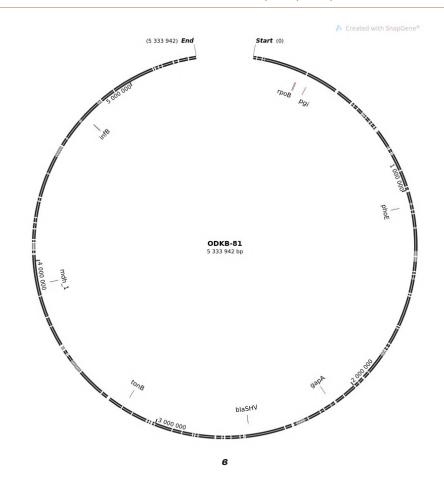


FIG. 1. (continued)

Chromosome maps of K. pneumoniae ODKB-7 (a), K. pneumoniae ODKB-16 (b), K. pneumoniae ODKB-81 (b) strains mapped to the K. pneumoniae subsp. pneumoniae HS11286 reference genome. Genes identified by MLST (gapA, infB, mdh, pgi, phoE, rpoB, and tonB) as well as MLST analysis of virulence determinants (AbST, CbST, YbST, SmST, RmST) and antibiotic resistance are indicated in the footnotes

TABLE 4

GENETIC PROFILE OF ISOLATES OF THE *K. PNEUMONIAE* SPECIES COMPLEX

	scgMLST629_S Profile							
Isolate labeling	MLST	scgMLST629	LIN code	Phylogroup	Subline	Clonal group	K-type	KL-type
K. pneumoniae ODKB-16	ST-65	scgST-11107	0_0_391_0_0_0_3_1_0_0	Кр1	SL1471; SL322; SL65	CG1471; CG322; CG65	K2	KL2
K. pneumoniae ODKB-07	ST- 219	scgST-6401	0_0_80_8_0_0_0_7_0_0	Кр1	SL107; SL3157	CG219; CG3157	no	KL125KL114
K. pneumoniae ODKB-81	ST-86	scgST-2800	0_0_395_0_13_1_0_0_0	Кр1	SL1471; SL322; SL86	CG1471; CG322; CG86	K2	KL2KL30

TABLE 5
VIRULENCE PROFILE OF *K. PNEUMONIAE* ODKB-16 ISOLATE

AbST/Aerobactin/ iucABCD, iutA*		CbST/Colibactin/ clbABCDEFGHILMNOPQ		YbST/ Yersiniabactin/ ybtSXQPAUTE, irp2, irp1, fyuA	iroBCDN		RmST/RmpADCproteins/ rmpACD	
Genotype	iuc lineage	Genotype	clb lineage	ICE lineage	Genotype	iro lineage	Genotype	rmp lineage
ST-1	iuc 1	ST-13	clb 3	Ybt-17; ICEKp10	ST-10	iro 1	ST-38	rmp 1; KpVP-1

Note. * - gene cluster name/target product/list of genes from the gene cluster.

has been previously revealed to be closely associated with *K. pneumoniae* infection [29, 30]. All loci of this operon were only determined in the highly virulent MDR isolate of *K. pneumoniae* ODKB-16 (Fig. 16).

Resistome analysis of the studied strains using the Pasteur Institute's service for strains of the K. pneumoniae [27] revealed that the genome of three strains of K. pneumoniae contained gene clusters encoding resistance to aminoglycosides, beta-lactamases, quinolones, and had genotype 2b, determined by 23 loci encoding resistance to beta-lactam antibiotics. Additionally, catA and sulA genes encoding resistance to chloramphenicol and sulphonamides, respectively, were determined in the genomes of all strains. The fosA gene encoding resistance to fosfomycin was revealed only in the chromosome of K. pneumoniae isolates ODKB-16 and ODKB-81. Efflux pumps are considered to be one mechanism of multiple AMA resistance formation. Determinants of efflux pumps and their regulation ogxAB, acrAB-tolC, acrZ, cusA, marAR, soxSR, rob, ramAR (RND (Resistance-Nodulation Division) family), mdtM, bcr (MFS (Major Facilitator Superfamily) family), and macAB (ABC (ATP Binding Cassette) family) were determined in the genomes of all isolates.

DISCUSSION

In our previous studies, opportunistic bacteria of *K. pneumoniae* species were classified as an etiological factor in the development of nosocomial generalised purulent-septic infections [12], and their ability to biofilm formation and resistance to disinfectants and AMA was observed [13-15]. Three isolates of *K. pneumoniae* with resistance to different groups of AMA were studied to determine the clinical significance and potential of the *K. pneumoniae* species complex. It should be outlined that *K. pneumoniae* strains ODKB-07 and ODKB-81 were isolated from biotopes that account for the highest frequency of isolation of opportunistic microorganisms of the *K. pneumoniae* species complex [12] – these are both blood and sputum, respectively.

The phylogenetic analysis of the *K. pneumoniae* species complex conducted by M. Hennart et al. [3]

allowed to isolate seven major phylogroups Kp1-Kp7, with the most represented phylogroup Kp1 – the group of K. pneumoniae sensu stricto. Various studies have revealed a great diversity of sublineages (SL) and clonal groups (CG) in its phylogenetic structure, reflecting the active interest of clinical microbiologists in isolates with multidrug resistance or/and hypervirulence [1, 3, 10, 11]. Phylogenetic analyses of other K. pneumoniae phylogroups revealed divergent SLs, but they were not predominant; apparently clinically important sublines and clonal groups in these phylogroups have yet to be sequenced [3]. The authors also complemented the multilocus core genome analysis scheme (cgMLST, 634 loci) previously defined by S. Bialek-Davenet et al. [2]. The scgMLST629 scheme includes 629 loci and the profile combines LIN code, phylogroup (Kp), sublineage (SL), and clonal group (CG) [3].

The *K. pneumoniae* isolates ODKB-16, ODKB-07, and ODKB-81 that have been analysed in this study were assigned to genotypes ST-65, ST-219, and ST-86 based on MLST analysis. ScgMLST629 analysis revealed similarity to sublineages SL1471, SL322, and SL65 for *K. pneumoniae* ODKB-16, SL107, and SL3157 for *K. pneumoniae* ODKB-07, and SL1471, SL322, and SL86 for *K. pneumoniae* ODKB-81.

It should also be pointed out that there is a different frequency of virulence genes and AMA resistance genes being observed among the major SLs and CGs [3, 31]. Among the analyzed isolates, all loci were determined only in the *K. pneumoniae* ODKB-16 genome, according to the virulence profile proposed earlier [10, 11]. An isolate with a mean virulence score of 5 had a mean resistance score of 1 (1 = ESBL).

The emergence of highly virulent strains of *K. pneumoniae* with high resistance to antibiotics has recently forced researchers to actively study the mechanisms and factors responsible for the emergence and survival of such bacteria [29]. Considering the effect of AMA against bacteria as a cell response to an environmental stressor, the formation of resistance may be a consequence of different genetic determinants. Alternatively, cross-resistance or jointly resistance, for example, to AMA and disinfectants and/or AMA and heavy metals, may be associated with similar

genetic mechanisms for resistance phenotype formation [32, 33]. In recent experimental studies with model animals, the tellurium resistance operon, known as ter-operon, was revealed to be associated with pneumonia and bacteraemia caused by K. pneumoniae [29]. Comprehensive studies of the ter-operon in K. pneumoniae based on genomic and bioinformatic approaches revealed that the ter-operon was genetically independent of other plasmid-encoded virulence and antibiotic resistance loci [29]. In mouse model experiments, ter-operon, which is closely associated with infection, has been revealed to encode factors that resist stress induced by the local gut bugs during K. pneumoniae colonisation [29]. In a study modelling urinary tract infection, the role of TerC protein in resistance to ofloxacin, polymyxin B, and cetylpyridinium chloride was revealed [30], and together, the results of these studies suggest a role for ter-operon as a factor in persistence and stress tolerance [29, 30]. Among the K. pneumoniae strains analysed in this study, only in the genome of the highly virulent isolate with MDR ODKB-16 all loci of the ter-operon were characterized, indicating the presence of additional determinants of tolerance to environmental stressors in its genome.

CONCLUSION

Phylogroups, sublines, and clonal groups within isolates of the K. pneumoniae species complex can vary considerably in their ecology and pathogenicity, and their precise definition is important in both basic research and practical public health. The genomes of three clinical isolates of K. pneumoniae obtained from the patients' clinical material were characterised based on different multilocus sequence typing schemes. The virulence profile was determined, MLST typing of seven genes and core genome typing with 629 genes (scgMLST62) was performed, and all isolates were assigned to the Kp1 phylogroup, K2 K-type and 2b genotype. Additionally, the ter operon has been characterized as a stress tolerance factor. This comprehensive species-specific scheme for genomic taxonomy of clinical isolates may be used and should help unify global and regional patterns of emergence and microevolution of bacterial pathogens.

Funding

The research was performed within the framework of the state task No. 121022500179-0.

Conflict of interest

The authors of this article declare no conflicts of interest.

REFERENCES

1. Wyres KL, Lam MMC, Holt KE. Population genomics of *Klebsiella pneumoniae*. *Nat Rev Microbiol*. 2020; 18(6): 344-359. doi: 10.1038/s41579-019-0315-1

- 2. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS, et al. Genomic definition of hypervirulent and multidrug-resistant *Klebsiella pneumoniae* clonal groups. *Emerg Infect Dis*. 2014; 20(11): 1812-1820. doi: 10.3201/eid2011.140206
- 3. Hennart M, Guglielmini J, Bridel S, Maiden MCJ, Jolley KA, Criscuolo A, et al. A dual barcoding approach to bacterial strain nomenclature: Genomic taxonomy of *Klebsiella pneumoniae* strains. *Mol Biol Evol*. 2022; 39(7): msac135. doi: 10.1093/molbev/msac135
- 4. Gonzalez JM, Puerta-Fernández E, Santana MM, Rekadwad B. On a non-discrete concept of prokaryotic species. *Microorganisms*. 2020; 8(11): 1723. doi: 10.3390/microorganisms8111723
- 5. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. *Proc Natl Acad Sci U S A*. 1998; 95(6): 3140-3145. doi: 10.1073/pnas.95.6.3140
- 6. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z, Sangal V, et al. Multilocus sequence typing as a replacement for serotyping in *Salmonella enterica*. *PloS Pathog*. 2012; 8(6): e1002776. doi: 10.1371/journal.ppat.1002776
- 7. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the Pub-MLST.Org website and their applications. *Wellcome Open Res.* 2018; 3: 124. doi: 10.12688/wellcomeopenres.14826.1
- 8. Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. Multilocus sequence typing of *Klebsiella pneumoniae* nosocomial isolates. *J Clin Microbiol*. 2005; 43: 4178-4182. doi: 10.1128/JCM.43.8.4178-4182.2005
- 9. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C, et al. *wzi* gene sequencing, a rapid method for determination of capsular type for *Klebsiella* strains. *J Clin Microbiol*. 2013; 51(12): 4073-4078. doi: 10.1128/JCM.01924-13
- 10. Lam MMC, Wyres KL, Judd LM, Wick RR, Jenney A, Brisse S, et al. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in *Klebsiella pneumoniae*. *Genome Med*. 2018; 10(1): 77. doi: 10.1186/s13073-018-0587-5
- 11. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in *Klebsiella pneumoniae* populations. *Microb Genom*. 2018; 4(9): e000196. doi: 10.1099/mgen.0.000196
- 12. Noskova OA, Agapova ED, Baturina EA, Gvak GV. Microbiological monitoring in the system of epidemiological surveillance of purulent-septic infections in a multidisciplinary hospital. *Acta biomedica scientifica*. 2019; 4(5): 122-126. (In Russ.). [Носкова О.А., Агапова Е.Д., Батурина Е.А., Гвак Г.В. Микробиологический мониторинг в системе эпидемиологического надзора за гнойно-септическими инфекциями в детском многопрофильном стационаре. *Acta Biomedica Scientifica*. 2019; 4(5): 122-126.]. doi: 10.29413/ABS.2019-4.5.19
- 13. Nemchenko UM, Kungurtseva EA, Grigorova EV, Belkova NL, Markova YA, Noskova OA, et al. Simulation

of bacterial biofilms and estimation of the sensitivity of healthcare-associated infection pathogens to bactericide Sekusept active. *Russian Clinical Laboratory Diagnostics*. 2020; 65(10): 652-658. (In Russ.). [Немченко У.М., Кунгурцева Е.А., Григорова Е.В., Белькова Н.Л., Маркова Ю.А., Носкова О.А., и др. Моделирование бактериальных биопленок и оценка чувствительности возбудителей инфекций, связанных с оказанием медицинской помощи, к дезинфицирующему средству Секусепт актив. *Клиническая лабораторная диагностика*. 2020; 65(10): 652-658.]. doi: 10.18821/0869-2084-2020-65-10-652-658

- 14. Savilov ED, Anganova EV, Noskova OA, Dukhanina AV. Bacteria biofilms in purulent-septic infections. *Acta Biomedica Scientifica*. 2019; 4(5): 38-42. (In Russ.). [Савилов Е.Д., Анганова Е.В., Носкова О.А., Духанина А.В. Бактериальные биоплёнки при гнойно-септических инфекциях. *Acta Biomedica Scientifica*. 2019; 4(5): 38-42.]. doi: 10.29413/ABS.2019-4.5.6
- 15. Savilov ED, Markova YA, Nemchenko UM, Noskova OA, Chemezova NN, Kungurtseva EA, et al. Ability to biofilm formation in infectious agents isolated from patients of a large general children's hospital. *Pacific Medical Journal*. 2020; 1: 32-35. (In Russ.). [Савилов Е.Д., Маркова Ю.А., Немченко У.М., Носкова О.А., Чемезова Н.Н., Кунгурцева Е.А., и др. Способность к биопленкообразованию у возбудителей инфекций, выделенных от пациентов крупного многопрофильного детского стационара. *Тихоокеанский медицинский журнал*. 2020; 1: 32-35.]. doi: 10.34215/1609-1175-2020-1-32-35
- 16. Voropaeva NM, Belkova NL, Nemchenko UM, Grigorova EV, Kungurtseva EA, Noskova OA, et al. Identification of infectious diseases patterns in the combined use of bacteriological diagnostics and MALDI Biotyper. *Acta biomedica scientifica*. 2020; 5(6): 88-94. (In Russ.). [Воропаева Н.М., Белькова Н.Л., Немченко У.М., Григорова Е.В., Кунгурцева Е.А., Носкова О.А., и др. Идентификация возбудителей инфекционных заболеваний при совместном использовании бактериологической диагностики и MALDI Biotyper. *Acta Biomedica Scientifica*. 2020; 5(6): 88-94.]. doi: 10.29413/ABS.2020-5.6.10
- 17. Determination of the sensitivity of microorganisms to antimicrobial drugs: Clinical recommendations; version 2018-03. Moscow; 2018. (In Russ.). URL: https://www.antibiotic.ru/files/321/clrec-dsma2018.pdf [date of access: 28.08.2023].
- 18. Determination of the sensitivity of microorganisms to antibacterial drugs: MUK 4.2.1890-04. (In Russ.). URL: https://docs.cntd.ru/document/1200038583 [date of access: 28.08.2023].
- 19. The European Committee on Antimicrobial Susceptibility Testing EUCAST. URL: https://www.eucast.org [date of access: 28.11.2023].
- 20. Aslanov BI, Zueva LP, Kaftyreva LA, Boytsov AG, Akimkin VG, Dolgiy AA, et al. *Rational use of bacteriophages in therapeutic and anti-epidemic practice: Federal clinical guidelines*. Moscow; 2014. (In Russ.). [Асланов Б.И., Зуева Л.П., Кафтырева Л.А., Бойцов А.Г., Акимкин В.Г., Долгий А.А., и др. *Рациональное применение бактери-*

- офагов в лечебной и противоэпидемической практике: Федеральные клинические рекомендации. М.; 2014.].
- 21. Grigorova EV, Rychkova LV, Belkova NL, Nemchenko UM, Savelkaeva MV, Kungurtseva EA, et al. Evaluation of the sensitivity of bacteriophage preparations to *Klebsiella pneumoniae* strains isolated from the colon microbiota in children with functional gastrointestinal disorders. *Russian Clinical Laboratory Diagnostics*. 2021; 66(4): 217-222. (In Russ.). [Григорова Е.В., Рычкова Л.В., Белькова Н.Л., Немченко У.М., Савелькаева М.В., Кунгурцева Е.А., и др. Оценка литической активности препаратов бактериофагов на штаммы *Klebsiella pneumoniae*, выделенных из микробиоты толстой кишки у детей с функциональными гастроинтестинальными расстройствами. *Клиническая лабораторная диагностика*. 2021; 66(4): 217-222.]. doi: 10.51620/0869-2084-2021-66-4-217-222
- 22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol*. 2012; 19(5): 455-477. doi: 10.1089/cmb.2012.0021
- 23. Rissman Al, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT. Reordering contigs of draft genomes using the Mauve aligner. *Bioinformatics*. 2009; 25: 2071-2073. doi: 10.1093/bioinformatics/btp356
- 24. Seemann T. Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*. 2014; 30(14): 2068-2069. doi: 10.1093/bioinformatics/btu153
- 25. Robertson J, Nash JHE. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. *Microb Genom*. 2018; 4(8): e000206. doi: 10.1099/mgen.0.000206
- 26. IS FINDER. URL: https://www-is.biotoul.fr [date of access: December 01, 2023].
- 27. Institut Pasteur. *Klebsiella pneumoniae* species complex. URL: https://bigsdb.pasteur.fr/klebsiella [date of access: 28.08.2023].
- 28. Hynninen A, Touzé T, Pitkänen L, Mengin-Lecreulx D, Virta M. An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. *Mol Microbiol*. 2009; 74(2): 384-394. doi: 10.1111/j.1365-2958.2009.06868.x
- 29. Vornhagen J, Bassis CM, Ramakrishnan S, Hein R, Mason S, Bergman Y, et al. A plasmid locus associated with *Klebsiella* clinical infections encodes a microbiome-dependent gut fitness factor. *PLoS Pathog.* 2021; 17(4): e1009537. doi: 10.1371/journal.ppat.1009537
- 30. Mason S, Vornhagen J, Smith SN, Mike LA, Mobley HLT, Bachman MA. The *Klebsiella pneumoniae* ter operon enhances stress tolerance. *Infect Immun*. 2023; 91(2): e0055922. doi: 10.1128/iai.00559-22
- 31. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE. A genomic surveillance framework and genotyping tool for *Klebsiella pneumoniae* and its related species complex. *Nat Commun*. 2021; 12(1): 4188. doi: 10.1038/s41467-021-24448-3
- 32. Vats P, Kaur UJ, Rishi P. Heavy metal-induced selection and proliferation of antibiotic resistance: A review.

J Appl Microbiol. 2022; 132(6): 4058-4076. doi: 10.1111/jam.15492

33. Kovalchuk SN, Fedorova LS, Ilina EN. Molecular mechanisms of microbial resistance to disinfectants. *Antibiotics and Chemotherapy*. 2023; 68(1-2): 45-56. (In Russ.).

[Ковальчук С.Н., Федорова Л.С., Ильина Е.Н. Молекулярные механизмы микробной устойчивости к дезинфицирующим средствам. *Антибиотики и химиотерапия*. 2023; 68(1-2): 45-56.]. doi: 10.37489/0235-2990-2023-68-1-2-45-56

Information about the authors

Natalia L. Belkova – Cand. Sc. (Biol.), Docent, Leading Research Officer at the Laboratory for Microbiome and Microecology, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: nlbelkova@gmail.com, https://orcid.org/0000-0001-9720-068X

Elizaveta S. Klimenko – Junior Research Officer at the Laboratory of Microbiome and Microecology, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: klimenko.elizabet@gmail.com, https://orcid.org/0000-0003-0979-8816

Ulyana M. Nemchenko – Cand. Sc. (Biol.), Research Officer at the Laboratory for Microbiome and Microecology, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: umnemch@mail.ru, https://orcid.org/0000-0002-7656-342X

Ekaterina V. Grigorova – Cand. Sc. (Biol.), Research Officer at the Laboratory for Microbiome and Microecology, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: buxarowa.ekaterina@yandex.ru, https://orcid.org/0000-0001-6588-2591

Kseniya O. Sitnikova – Clinical Research Assistant at the Laboratory for Microbiome and Microecology, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: butakovaksenia505@gmail.com, https://orcid.org/0000-0001-7717-906X

Raisa E. Zugeeva – Clinical Research Assistant at the Laboratory for Microbiome and Microecology, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: raya.zugeeva@mail.ru, https://orcid.org/0009-0000-8522-7359

Nadezhda E. Smurova – Clinical Research Assistant at the Laboratory of Microbiome and Microecology, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: nadinasmurova@mail.ru, https://orcid.org/0009-0004-3614-6631

Natalya N. Chemezova – Cand. Sc. (Biol.), Bacteriologist, Scientific Centre for Family Health and Human Reproduction Problems; Associate Professor at the Department of Epidemiology and Microbiology, Irkutsk State Medical Academy of Postgraduate Education – Branch Campus of the Russian Medical Academy of Continuing Professional Education, e-mail: chemezova_nataly@mail.ru, https://orcid.org/0000-0001-5375-7785

Evgeny D. Savilov – Dr. Sc. (Med.), Professor, Chief Research Officer at the Laboratory of Epidemiologically and Socially Important Infections, Scientific Centre for Family Health and Human Reproduction Problems, e-mail: savilov47@gmail.com, http://orcid.org/0000-0002-9217-6876