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ABSTRACT

The review presents evidence of the participation of low-density lipoproteins (LDL)
modified by low molecular weight dicarbonyl compounds formed during free-
radical oxidation of lipids (malondialdehyde) and carbohydrates in the development
of endothelial dysfunction and atherosclerotic vascular lesions. The authors believe
that it is they, and not oxidized (hydroperoxide-containing) LDL, that are the main
factors of pathogenesis. The role of dicarbonyl-modified LDL in LOX-1 dependent
induction of processes leading to the development of endothelial dysfunction
is discussed. The results of studies proving that damage to the glycocalyx (a layer
of macromolecules that prevent the development of endothelial dysfunction) cover-
ing the luminal surface of the endothelium is caused by hyperproduction of reactive
oxygen species. Ways of pharmacological correction of free-radical oxidation pro-
cesses are discussed, due to which inhibition of atherogenesis and diabetogenesis
can be achieved.
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PE3IOME

Bo630ope npusodsmcs dokazamesnbcmaa yuacmus aunonpomeuoos HU3Kou njiom-
Hocmu (JTHI), MoOuguyuUpOBAHHBIX HUSKOMOJIEKYIAPHLIMU OUKAPOOHUTbHBIMU
CoeOUHeHUAMU, 06pasyroWUMUCA Npu c80600HOPACUKA/IbHOM OKUC/IEHUU TUNUO08
(mManoHoswbIl Ouansoe2ud) u y2neso008, 8 pazsumuu OUuchyHKYUU SHOomesnus
U amepocKiepomuy4eckozo NopaxeHus cocyo0os. ABmopel Noaazaom, Ymo UMeHHO
OHU, a He OKUCJIeHHble (2udponepokcud-cooepxauwyue) JIHI a81910mcs 0CHOBHbIMU
¢hakmopamu namozeHe3a. O6cyx0aemcs posib OUKapOOHUT-MOOUPBUYUPOBAHHbIX
JIHIT 8 LOX-1-3a8ucumoti UHOYKYUU Npoyeccos, NpusooAWUX K pazsumuio ouc-
¢yHKYuU 3H0OMenus. Paccmampusaromcs pesysibmamel Uccs1e0o8aHuli, 00Ka-
3bI8AIOWYUX, YMO K NOBPEXOEHUIO NOKPbLIBAIOWE20 JIIOMUHAIbHYI0O NOBEPXHOCMb
SHOOMeNUs 2IUKOKATUKCA — CJIOS MAKPOMOJIEeKYJT, Npensmcmaytouje2o pa3eumuio
ouceyHKYuU 3HOOMesus, — 8e0ém 2unepnpoOyKyUs AKMUBHbIX (hOPM KUC/IOpOOd.
O6cyx0aromca nymu ¢hapmakoso2uydeckol Koppekyuu npoyeccos c0600HOpaou-
KasbHO20 OKUCeHUs, 671a200aps Komopol Moxem 00CMu2ambsCs MopMoXeHUe
npoyeccos amepozeHe3a u duabemoezeHesd.

Knioueevole cnosa: mManoHo8bIl 0uane0e2ud, MemusiuoKcaab, OUCyHKYUA
3HOOMeNUs, 2/IUKOKAJTUKC, IUNONpomMeuodbl HU3KOU N1I0MmHoCcMu, c80600Hble
paouKasbl, amepockiepos, caxapHsilt duabem
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In the middle of the last century, Denhem Harman
hypothesized that aging is associated with the accu-
mulation of cell damage caused by products of spon-
taneous free-radical oxidation (FRO) [1, 2]. Since such
pathologies as atherosclerosis and diabetes melli-
tus can be attributed to diseases of old age, D. Har-
man suggested that the emergence and development
of these pathological conditions (he called them “free-
radical diseases”) are associated with the damaging
effect of free-radical reactions [3]. J. Glavind et al. [4]
in 1952 were the first to suggest that free-radical ox-
idation of lipids might be one of the triggering fac-
tors of atherosclerotic lesion of the vascular wall.
Based on the analysis of autopsy materials, these au-
thors concluded that the level of lipoperoxides in hu-
man aorta with atherosclerotic lesions is always high-
er than in the unaffected vascular wall. Unfortunately,
a small number of samples were studied in this work,
and an insufficient method of analysis was used to an-
alyze the lipoperoxide content, which, as it was found
later [5], is not specific enough. In spite of this, dur-
ing the following decade the conclusions of the work
of J. Glavind et al. did not raise doubts. Only in 1965,
F.R. Woodford et al. [5] made an attempt to experimen-
tally verify these results, using a highly specific method
of iodometric titration with amperometric equivalence
point determination developed earlier for the analysis
of lipoperoxides [6]. The results obtained by F.R. Wood-
ford et al. practically refuted the conclusion of J. Glavind
et al. as statistically significant differences between
the content of lipoperoxides in atherosclerotic le-
sion areas and intact areas of the aorta in autopsies
could not be detected by these authors. The pessimis-
tic conclusions of the publication by F.R. Woodford et al.
cooled the interest in the free-radical theory of athero-
genesis for a long time, despite its theoretical justifica-
tion given in the articles by D. Harman [1-3]. At the same
time, we detected an increase in the content of free ra-
dical oxidation products in the aorta of animals with ex-
perimental atherosclerosis [7]. Only two decades later
our group using an adequate method of high-perfor-
mance liquid chromatography (HPLC) proved a signifi-
cantincrease in the content of primary products of FRO -
lipid hydroperoxides (LOOH) [8, 9] in the aorta damaged
by atherosclerosis (compared to the unaffected area
of the vascular wall), which increased with the progres-
sion of atherosclerotic lesion [8, 9]. It should be noted
that these unique studies were performed using autop-
sy material during rapid autopsies of people who died
in car accidents within 3 hours after the confirmation
of death, i. e., when native samples were analyzed [8, 9].
(HPLC on a chiral phase column) with ratio of S- and R-
stereoisomers proved that LOOHs detected in athero-
sclerotically damaged aorta are the result of spontane-
ous (non-enzymatic) free-radical oxidation of unsatu-
rated lipids [8, 9]. Cholesterol esters is the major class
of lipids accumulating in the areas of atherosclerotic
lesions of the vascular wall [10, 11], and not only fatty
acid residues [8, 9] but also the sterol part of the mol-
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ecule are subjected to oxidation [10, 12]. A decrease
in the activity of key antioxidant enzymes (Se-contain-
ing glutathione peroxidase (GSH-Px) and Cu,Zn-su-
peroxide dismutase (Cu,Zn-SOD)) was also detected
in the areas of human aortic atherosclerotic lesions, pro-
gressing with the increasing degree of damage [9, 13].
Then the hypothesis ofimbalanced systems of FRO prod-
uct formation and utilization in atherosclerosis was for-
mulated [9, 14]. The same data provided convincing
grounds for classifying atherosclerosis as a “free-radical
pathology”,i.e., a disease whose pathogenesis is strong-
ly influenced by FRO processes [9, 14].

It should be noted that a significant increase in the lev-
el of primary and secondary products of lipid free-radical
oxidation was detected in a representative epidemiolog-
ical study in blood plasma of probands with diagnosed
atherosclerosis [7, 9, 14]. In the same study, decreased
activity of erythrocyte GSH-Px, LOOH utilizing enzyme,
was found in patients with atherosclerosis [9, 14]. Based
on these results, it could be assumed that nanoparticles
of the lipid-transporting system - blood plasma lipopro-
teins — undergo oxidation during atherogenesis [7, 9, 14].
Indeed, it has been shown that “atherogenic” low-densi-
ty lipoproteins (LDL) easily undergo oxidation both when
incubated in the presence of vascular endotheliocytes
and in the presence of free-radical oxidation initiators
[15, 16]. It was found that chemical modification of blood
plasma LDL particles with acetaldehyde makes them more
«atherogenic» [17], i. e. capable of binding to the scaven-
ger receptor and accumulating in macrophages of the vas-
cular wall [17]. Later, numerous studies found that LDL
particles subjected to free-radical oxidation also become
«atherogenic» [18-25].

It is recognized that lipid FRO is a two-stage pro-
cess: first, primary — unstable - LOOH oxidation products
are formed. They further undergo oxidative degradation
and form low molecular weight dicarbonyls, i. e. second-
ary products [26]. Consequently, with a sharp increase
of LOOH in tissues, oxidative stress during atherogen-
esis must inevitably be accompanied by the accumula-
tion of such active carbonyl products as hydroxynonenals
and malondialdehyde (MDA), i. e., converted to carbon-
yl stress [14, 26]. In turn, aldehyde groups of dicarbonyls
can easily react with the amino end groups of proteins
by the Maillard reaction to form intra- and intermolec-
ular cross-links in their molecules [26]. The possibili-
ty of MDA participating in modification of LDL apopro-
tein B-100 has been established [27], but nevertheless,
the question of the mechanism of LDL oxidative modifica-
tion, due to which LDL particles acquire “atherogenicity”,
has not been solved so far [14].

In strict terminology, “oxidized” LDLs contain hy-
droperoxy acyls in the phospholipids of the outer lay-
er of the particles. Fundamentally, the accumulation
of hydroperoxy acyls in the outer phospholipid mon-
olayer of LDL can lead to changes in apoprotein B-100
conformation. Thus, during free-radical oxidation of un-
saturated (“liquid”) acyls of membrane phospholipids,
an increase in membrane microviscosity is detected [9,



28] due to the “pushing” or “pulling” of more polar hy-
droperoxy acyls into the aqueous phase, as the rela-
tive content of saturated («solid») fatty acid residues
increases in the membrane [9, 28]. It is highly likely
that when fundamental properties of biomembranes
such as microviscosity and polarity are significantly al-
tered, the conformation of peripheral and integral pro-
teins embedded in the phospholipid bilayer may be al-
tered. In particular, we found a multidirectional change
in the activity of membrane-bound enzymes in the same
membrane during free-radical oxidation of liver micro-
somes biomembranes: the activity of some enzymes
(sensitive to oxidation) decreased, while that of oth-
ers (resistant to oxidation) increased [29], which can
be explained by a physical change in the conformation
of the molecules of these proteins when the physico-
chemical properties of membrane lipids change. Based
on these results, it could be assumed that oxidation
of phospholipidsin LDL particles would lead to a change
in the apoprotein B-100 conformation, as a consequence
of which the efficiency of binding of such “oxidised”
LDLs to the scavenger receptor of macrophages would
also be changed.

The in vitro induction of LDL free radical oxidation
using various initiators (such as azo initiators, hydrogen
peroxide, superoxide anion radicals, metal ions of var-
iable valency, etc.) leads to an increase in the concen-
tration of both primary (LOOH) and secondary lipoper-
oxidation products (MDA) [30, 31]. Therefore, it is obvi-
ous that it is impossible to determine which lipid FRO
products cause “atherogenic” modification of LDL par-
ticles using standard approaches. We were able to ob-
tain truly oxidized LDLs without an admixture of MDA-
modified LDLs [31] using a homogeneous preparation
of rabbit reticulocyte 15-lipoxygenase capable of oxi-
dizing polyene acyls of phospholipids [32]. At the same
time, MDA-modified LDLs without an admixture of ox-
idized (LOOH-containing) LDL were obtained by incu-
bation of LDLs with MDA [31]. When studying athero-
genicity (efficiency of LDL particles capture by cultured
human macrophages) of the two obtained LDL modi-
fications, we experimentally proved that not oxidized
(LOOH-containing LDLs) but exclusively MDA-modified
LDLs bind to the scavenger receptors of macrophages
[31]. Consequently, LDL particles modified by natural di-
carbonyls rather than oxidized LDLs should be efficient-
ly captured and accumulated in lipid vacuoles of vascu-
lar wall cells [31]. This leads to preaterosclerotic lesions
of vascular walls and the transformation of macrophages
and smooth muscle cells into “foam cells” forming lipoi-
dosis zones [9, 14]. The obtained results do not just clar-
ify the existing terminology, but are of principal charac-
ter, since they substantiate the existence of a quite def-
inite molecular mechanism of “atherogenic” modifica-
tion of LDL particles with the participation of natural
low-molecular carbonyl compounds. It was also found
that the most cholesterol-rich LDL particles are also simul-
taneously MDA-modified [33]. Therefore, carbonyl mod-
ification of LDL particles may contribute to the efficient
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entry of cholesterol into the vascular wall [33]. In addition,
there is evidence that increased accumulation of MDA-
modified LDLs is characteristic of patients with certain
mutations of apoprotein B-100, i. e. there is a possibili-
ty that carbonyl modification of LDLs may be genetical-
ly determined [34].

Protein molecules Cu,Zn-SOD and GSH-Px, similar-
ly to LDL apoprotein B-100, also undergo modification
during MDA accumulation during atherogenesis [35, 36],
which is accompanied by suppression of their activity
due to conformational changes in the structure of the ac-
tive centre [35, 36]. Itis obvious that dicarbonyl-dependent
inhibition of antioxidant enzyme activity during athero-
genesis must result in stimulation of oxidative stress.
Thus, the development of oxidative (LOOH accumulation)
and subsequent carbonyl stress (MDA accumulation) dur-
ing atherogenesis leads to the formation of dicarbonyl-
modified LDLs, which are the key factor causing pretero-
genic damage to the vascular wall and subsequent forma-
tion of atherosclerotic plaques [14].

Although the available literature attributes diabetes
mellitus as a risk factor for atherosclerosis or a contribut-
ing factor to its development, a large number of diabet-
ic patients die due to vascular incidents [37-39], no con-
vincing pathophysiological explanation is provided. Nev-
ertheless, an important role of FRO in the pathogene-
sis of diabetes mellitus has been hypothesized for quite
some time [40]. The basis of this hypothesis is the assump-
tion that in diabetes mellitus initially develops carbon-
yl rather than oxidative stress [41], in which active dicar-
bonyls such as glyoxal and methylglyoxal formed during
oxidative transformations of glucose accumulate [41-43].
Glyoxylation during autoxidation of glucose and oth-
er hexatomic carbohydrates leads to the formation of gly-
oxal. Methylglyoxal is synthesized during enzymatic ox-
idation of glucose with the formation of triosophos-
phates [41, 44, 45]. Methylglyoxal, as we have shown,
can also be formed when glucose derivatives are attacked
by lipoperoxyl free radicals, i. e. non-enzymatically [46].
High blood glucose level in patients with type 2 diabe-
tes mellitus contributes to LDL co-oxidation and a sharp
increase in the rate of LDL lipid FRO accompanied by su-
peroxide anion radical formation [47]. In the Maillard
reaction, the interaction of methylglyoxal and amino
end groups of apoprotein B-100 LDL can also gener-
ate superoxide radical [48]. Thus, diabetogenesis, unlike
atherogenesis, is characterized by the primary develop-
ment of carbonyl stress (accumulation of active carbon-
yl compounds), and at later stages, reactive oxygen spe-
cies (ROS) generated by the reactions described above
induce secondary oxidative stress.

On this basis, the stages of carbonyl stress devel-
opment and subsequent oxidative stress character-
ized by the accumulation of various oxidation products
should be distinguished during diabetogenesis. The ac-
cumulation of glyoxal and methylglyoxal in the blood
plasma of diabetic patients has been repeatedly con-
firmed experimentally [41-43]. At the same time, the pres-
ence of oxidative stress in diabetes is evidenced by a de-



crease in telomere length in blood nuclear cells [49],
as well as an increase in the level of 8-hydroxy-2'-deox-
yguanosine, the end product of oxidative DNA destruc-
tion, in the blood and urine of type 2 diabetic patients
[49]. It should be noted that 8-hydroxy-2-deoxyguanosine
is a recognized biomarker of oxidative stress [50]. Its accu-
mulation is not associated with the development of car-
bonyl stress. Increased levels of LOOH-containing LDLs
[41]in the blood of type 2 diabetes patients also suggests
that secondary induction of oxidative stress may indeed
occur during atherogenesis. Similar to atherosclerosis,
type 2 diabetes patients have increased carbonyl modifi-
cation of LDLs [49] and a sharp drop in erythrocyte Cu,Zn-
SOD and GSH-Px activity [49, 51], which is a characteristic
reflection of carbonyl stress.

A significant increase in glyoxal and methylglyox-
al levels in the blood of type 2 diabetes patients [41-
43] can induce LDL modification, which is recognized
by scavenger receptors of macrophages and thus canin-
duce LDL accumulation in the vascular wall with subse-
quent development of lipoidosis lesions [41]. It has been
shown that LDL modification by methylglyoxal signifi-
cantly increases the “atherogenicity” of LDLs (increases
their receptor capture by macrophages) [41, 52]. Based
on the above data, we hypothesized a single molecular
mechanism of vascular wall damage in atherosclerosis
and diabetes mellitus, which includes increased chem-
ical modification of LDL apoprotein B-100 by dicarbo-
nyls accumulated during free radical oxidation of lipids
in atherosclerosis or autoxidation of glucose molecules
in diabetes mellitus [47]. This hypothesis satisfactorily
explains the reasons for the stimulation of atherogene-
sis in diabetes and the fact that diabetes may increase
the risk of atherosclerosis [47].

As it has been found in recent years, oxidized LDLs
also play an important role in causing endothelial dys-
function [53-56]. The endotheliocyte scavenger receptor
LOX-1 is thought to bind to oxidized LDLs, causing the
expression of NADPH-oxidase, which generates superox-
ide anion radical, causing endothelial cell damage [57].
We found that strong expression of LOX-1 and NADPH-ox-
idase biosynthesis in human endotheliocytes is induced
by culturing cells in the presence of dicarbonyl-modified
(MDA-, glyoxal-, and methylglyoxal-modified) LDLs [58].
Consequently, the initial stages of vascular endothelial
dysfunction, a process that plays a leading role in athero-
genesis and diabetogenesis, are likely to be directly de-
pendent on the formation of dicarbonyl-modified rather
than “oxidized” LDLs. As a result, superoxide-dependent
endotheliocyte damage provokes stimulation of apopto-
sis and endothelial cell death [53, 56, 571, which, in turn,
obviously facilitates the penetration of modified LDLs into
the vascular wall.

We have found that the enzyme antioxidant system
of endotheliocytes is represented mainly by special class-
es of enzymes - peroxiredoxins [59], which, in accord-
ance with our data, like Cu,Zn-SOD and GSH-Px [35, 51],
are very sensitive to the inhibitory action of low-molec-
ular-weight dicarbonyls accumulated under oxidative
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and carbonyl stress [60]. There is no doubt that suppres-
sion of peroxiredoxin activity attenuates the antiradical
defence of endothelial cells, contributing to endothe-
lial damage and dysfunction. Thus, the data obtained
suggest that the formation of carbonyl-modified LDLs
is a key factor in the development of endothelial dys-
function, a process that plays a leading role in athero-
genesis and diabetogenesis.

Endothelial dysfunction must precede damage
to the endothelial glycocalyx. The glycocalyx is a pro-
tective layer of macromolecules (such as proteoglycans
and glycoproteins) covering the luminal surface of en-
dotheliocytes [61, 62]. Damage to the glycocalyx is con-
sidered to be the earliest stage of vascular wall damage
in various pathologies [63-66]. Glycocalyx controls the
permeability of the vascular wall [67] and the adhesion
of blood formed elements on endotheliocytes [68, 69].
In addition, the glycocalyx protects the endothelium
from damaging factors such as viruses, pro-inflammato-
ry cytokines and ROSs [70, 711. It is likely that glycocalyx
layer is the barrier preventing atherogenic LDLs (obvi-
ously, dicarbonyl-modified LDLs) from penetrating into
the subendothelial space of the vascular wall [72]. A de-
crease in glycocalyx thickness due to its fragmentation
has been observed in the process of ROS hyperproduc-
tion (“oxidative burst”) during ischemia and/or ischemia/
reperfusion [73-75], as well as an increase in the level
of oxidized LDLs [76, 77]. These facts suggest that oxi-
datively modified LDLs (most probably dicarbonyl-mod-
ified LDLs), formed by oxidative and carbonyl stress, are
the most important factors in atherogenesis. Conse-
quently, preservation of the glycocalyx should prevent
atherogenesis and diabetogenesis. Damage to the gly-
cocalyx can be considered as the first step in atheroscle-
rotic vascular damage.

The above proves that it is logical to use antioxidants
to suppress lipoperoxidation in LDLs, and several clin-
ical studies have used natural antioxidants such as vi-
tamin E (a-tocopherol, a-TOH) for this purpose. In con-
trast to the very encouraging positive results obtained
from studies involving animals with experimental athero-
sclerosis, trail data on antioxidant intervention (predom-
inantly a-TOH, in some cases in combination with ascor-
bate and/or B-carotene) in cardiovascular diseases
are quite ambiguous [78-82]. In randomized, double-
blind, placebo-controlled trials, the use of antioxidant
vitamins was found to statistically significantly reduce
the risk of cardiovascular disease and cardiac mortality
[83-85]. Moreover, angiography was performed as a con-
trol in one of the few studies [86], and the suppression
of coronary stenosis in patients treated with antioxidants
was documented [86]. Studies involving large cohorts
of men [87] and women [88] have demonstrated that reg-
ular consumption of a-TOH for several years contributes
to a statistically significant reduction in the risk of cor-
onary artery disease (CAD) [87, 88]. More than 2000 pa-
tients involved in the Cambridge Heart Antioxidant Study
(CHAOS) with angiographically confirmed atheroscle-
rosis received high (400-800 IU/day) doses of a-TOH



for one year, and a statistically significant reduction
in the risk of myocardial infarction was detected [89].
A statistically significant reduction in myocardial in-
farction incidents was noted during the SPACE study
involving patients with CAD who were treated with he-
modialysis and therapy including 800 IU/day of a-TOH
for almost 1.5 years [90]. However, several other clini-
cal trials have not demonstrated statistically significant
reductions in cardiovascular complications and/or re-
ductions in cardiac incident mortality with antioxidant
administration [91-94]. For example, a study including
a large number of male smokers who received a-TOH
and/or B-carotene for 5-8 years did not show statis-
tically significant increase in cardiovascular mortali-
ty [91]. In the GISSI-Prevenzione Trial, administration
of 450 IU/day of a-TOH to patients with post-myocardial
infarction (about 3 months) was not effective in reducing
mortality, nor in reducing the incidence of new infarc-
tions or strokes for 3.5 years [92]. In the Heart Outcomes
Prevention Evaluation Study (HOPE), more than 1500 pa-
tients at high risk of cardiovascular disease who received
400 IU of a-TOH per day for 4.5 years showed no statis-
tically significant reduction in cardiovascular mortali-
ty [93]. In the MRC/BHF Heart Protection Study, more
than 20,000 patients with CAD who received an antiox-
idant vitamin complex (900 IU/day of a-TOH) for 5 years
showed no increase in infarction- and stroke-related
mortality [94]. The results of such studies, which, con-
trary to expectations, have not provided clear positive
results regarding the use of antioxidants (including ex-
tremely high doses of a-TOH), gave a reason to believe
that the antioxidants used had a negative effect [78, 79].
Obviously, it is not correct to interpret the lack of ef-
fect as a negative effect, but the ambiguity of results
on the use of antioxidants in the clinic makes it neces-
sary to critically analyze the reasons for this. It is impor-
tant to note that no studies have found negative effects
of antioxidants (e. g., increased mortality and/or cardiac
complications), only a lack of expected positive effects.
Based on the design of the conducted studies, the prin-
ciples of selection of the used antioxidants and their
doses, the criteria for the assessment of biochemical
and clinical changes, it seems obvious that the results
of such studies a priori cannot give an unambiguous an-
swer to the questions posed in them. We might agree
with the statements of ardent opponents of further re-
search on the use of antioxidants in cardiology about
the uselessness (or even pointlessness) of continuing
such research [78, 79]. However, we should not radical-
ly change approaches to planning and conducting work.

It should be noted that the choice of a-TOH (vita-
min E) as an antioxidant used in most of the above studies
cannot be considered as sufficiently successful and jus-
tified. It is known that a-TOH, like other fat-soluble vita-
mins, is transported in the body as part of the hydropho-
bic lipid core of LDL particles [95]. Nevertheless, the pro-
tection of circulating LDL particles from free-radical ox-
idation in the bloodstream is performed not by a-TOH,
but by the reduced (phenolic) form of coenzyme Q,,[9,96-
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100]. Based on the fact thatin 1 LDL particle only 1-2 mol-
ecules of coenzyme Q,, account for approximately
650 molecules of the substrate of free-radical oxidation -
phospholipids [101, 102], effective inhibition of free-radi-
cal reactions in LDLs by this antioxidant is impossible with-
out its bioregeneration, possibly involving radical interme-
diates a-TOH and ascorbate [102-107]. At the same time,
it has been shown that administration of high doses
of a-TOH does not affect LDLs oxidability in CAD patients
[100]. Thus, it should be recognized that the use of a-TOH
to inhibit LDL oxidability in clinical trials is not justified,
and the use of coenzyme Q,, is more effective in protect-
ing LDL from oxidation [9, 100] and other phenolic an-
tioxidants, in particular, the non-toxic synthetic antioxi-
dant probucol [9, 100, 108-110], whose efficacy in inhib-
iting LDL oxidation has been convincingly confirmed [9,
100]. It is obviously impermissible to apply generaliza-
tions about “negative” results obtained on the use of in-
dividual antioxidants such as a-TOH or B-carotene [91-
93] to the whole rather heterogeneous group of antioxi-
dants [79], which includes substances of different struc-
ture and mechanism of action. In addition, the data pre-
sented in this review suggest that in order to suppress
atherogenesis and endothelial dysfunction it is necessary
to inhibit not only the accumulation of primary products
(LOOH) in LDLs, but also the accumulation of secondary
products of free radical oxidation — low molecular weight
dicarbonyls. There are already positive examples of ef-
fects on the intensity of free-radical oxidation using bi-
guanides - dicarbonyl scavengers [100, 111-113] and imi-
dazole-containing peptides [114, 115]. In particular, the use
of biguanides significantly suppressed the manifestation
of oxidative and carbonyl stress in diabetic patients with-
out the administration of any antioxidants (“quasi-anti-
oxidant effect”) [100]. Obviously, preventive cardiology
should aim to prevent the adverse effects of oxidative
modification of LDL, because modified LDLs, as shown
in this study, play an important role in the molecular mech-
anisms of atherogenesis and diabetogenesis. Current-
ly, preventive cardiology is focused on the development
of effective approaches to pharmacotherapy aimed at in-
hibiting the formation of primary and secondary products
of free radical oxidation in order to control the level of po-
tentially dangerous oxidized and modified LDLs.
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