ONCOLOGY

PRECURSORS, PATHWAYS OF CARCINOGENESIS AND MOLECULAR MARKERS OF VULVAR SQUAMOUS CELL CARCINOMA. LITERATURE REVIEW

ABSTRACT

Pakharukova M.I.^{1,2}, Yushkov B.G.², Beikin Ya.B.^{1,2}

 Clinical Diagnostic Center of Yekaterinburg (8 Marta str. 78-B, Yekaterinburg 620144, Russian Federation)
 Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (Pervomaiskaya str. 106, Yekaterinburg 620049, Russian Federation)

Corresponding author: **Maria I. Pakharukova,** e-mail: Pakharukovami@gmail.com The review analyzes and summarizes the results of the studies on the pathogenesis of vulvar squamous cell carcinoma and its diagnostic features, reviews precursors and molecular subtypes of carcinomas. Despite the relatively low incidence of this tumor, over the past few decades, there has been an upward trend in its incidence, including the incidence among young women. According to the latest World Health Organization classification of lower genital tumors from 2020, vulvar squamous cell carcinoma is divided into human papillomavirus (HPV) associated and HPV-independent. While these carcinomas are often morphologically similar, their mechanisms of carcinogenesis, precursors, and clinical outcomes are different. Just the detection of virus DNA in a tumor is not enough to establish HPV status. Meanwhile immunohistochemical detection of the expression of p16 and p53 proteins allows not only to separate two pathogenetic pathways of carcinogenesis, but also to identify its molecular subtypes. The data on the possible use of p16 and p53 expression as the disease prognosis molecular markers have been obtained. Currently, the tactics of treatment and monitoring patients does not depend on the HPV status of carcinoma; however, the results of recent studies suggest that women with HPV positive vulvar cancer have significantly higher survival rates and a lower risk of recurrence. Understanding the mechanisms of carcinogenesis and improving its diagnosis will advance the assessment of the individual risk of the progression of precancerous lesions, as well as the outcome and the occurrence of tumor recurrence.

Key words: vulvar squamous cell carcinoma, intraepithelial neoplasia, human papillomavirus, p16, p53

Received: 23.05.2022 Accepted: 10.01.2023 Published: 02.03.2023 **For citation:** Pakharukova M.I., Yushkov B.G., Beikin Ya.B. Precursors, pathways of carcinogenesis and molecular markers of vulvar squamous cell carcinoma. Literature review. *Acta biomedica scientifica*. 2023; 8(1): 117-126. doi: 10.29413/ABS.2023-8.1.13

ПРЕДШЕСТВЕННИКИ, ПУТИ КАНЦЕРОГЕНЕЗА И МОЛЕКУЛЯРНЫЕ МАРКЕРЫ ПЛОСКОКЛЕТОЧНОЙ КАРЦИНОМЫ ВУЛЬВЫ. ЛИТЕРАТУРНЫЙ ОБЗОР

РЕЗЮМЕ

Пахарукова М.И. ^{1, 2}, Юшков Б.Г. ², Бейкин Я.Б. ^{1, 2}

¹ ГАУЗ СО «Клинико-диагностический центр город Екатеринбург» (620144, г. Екатеринбург, ул. 8 Марта, 78-В, Россия)
² ФГБУН Институт иммунологии и физиологии УрО РАН (620049, г. Екатеринбург, ул. Первомайская, 106, Россия)

Автор, ответственный за переписку: Пахарукова Мария Игоревна, e-mail: Pakharukovami@gmail.com

В обзоре проанализированы и обобщены результаты исследований, изучающих патогенез плоскоклеточного рака вульвы и особенности его диагностики, рассмотрены предшествующие состояния и молекулярные подтипы карцином. Несмотря на относительно низкую встречаемость опухоли, за последние несколько десятилетий отмечается тенденция к росту заболеваемости, в том числе среди молодых женщин. Согласно последней классификации Всемирной организации здравоохранения опухолей нижнего отдела генитального тракта от 2020 г., плоскоклеточный рак вульвы подразделяется на ассоциированный с вирусом папилломы человека (ВПЧ) и ВПЧ-независимый. В то время как морфологически эти карциномы часто являются сходными, механизмы канцерогенеза, предшественники, а также клинические исходы у них различны. Только лишь обнаружение ДНК вируса в опухоли недостаточно для установки ВПЧ-статуса. В то же время иммуногистохимическое обнаружение экспрессии белков р16 и р53 позволяет не только разделить два патогенетических пути канцерогенеза, но и выявить его молекулярные подтипы. Получены данные о том, что экспрессию р16 и р53 возможно также использовать в качестве молекулярных маркеров прогноза заболевания. В настоящее время тактика лечения и наблюдения пациенток не зависит от ВПЧ-статуса карциномы, однако результаты исследований последних лет говорят о том, что женщины с ВПЧ-положительным раком вульвы имеют значительно более высокие показатели выживаемости и меньший риск возникновения рецидивов. Понимание механизмов канцерогенеза и усовершенствование его диагностики позволит улучшить оценку индивидуального риска прогресса предопухолевых состояний, а также исход и возникновение рецидива опухоли.

Ключевые слова: плоскоклеточная карцинома вульвы, интраэпителиальная неоплазия, вирус папилломы человека, p16, p53

Статья поступила: 23.05.2022 Статья принята: 10.01.2023 Статья опубликована: 02.03.2023 **Для цитирования:** Пахарукова М.И., Юшков Б.Г., Бейкин Я.Б. Предшественники, пути канцерогенеза и молекулярные маркеры плоскоклеточной карциномы вульвы. Литературный обзор. *Acta biomedica scientifica*. 2023; 8(1): 117-126. doi: 10.29413/ ABS.2023-8.1.13

INTRODUCTION

Despite the fact that vulvar squamous cell carcinoma (VSCC) is a rare malignant tumor. In the last decade, the attention of an increasing number of scientists has been focused on studying its pathogenetic mechanisms, molecular events of carcinogenesis, as well as searching for reliable prognostic biomarkers of the disease [1–8]. In 2020, The World Health Organization has published a new classification of lower genital tumors, according to which vulvar squamous cell carcinoma (VSCC) are divided into human papillomavirus (HPV) associated and HPV-independent [9]. Unlike cervical squamous cell carcinoma, which in most cases is associated with HPV of high carcinogenic risk (HCR) [10–12], vulvar squamous cell carcinoma is more often HPV-independent; its molecular mechanisms are still poorly studied [13, 14]. Currently, the tactics of treatment and monitoring patients with an established diagnosis of VSCC depends only on the stage of the disease and somatic status [15, 16]. However, the results of large studies in recent years suggest that women with HPV-positive vulvar squamous cell carcinoma have significantly higher overall survival rates and a lower risk of recurrence [2, 6]. At the same time, a number of authors in their works do not come to the conclusion about the differences in prognosis depending on the mechanism of pathogenesis [17-19]. Differences in the results of studies may be due to the lack of a standardized set of methods for diagnosing HPV status. Despite the high sensitivity of the polymerase chain reaction (PCR) method, its results cannot be interpreted as sufficient, since only the detection of HPV DNA HCR is not a proof of its role in the process of malignancy [20, 21]. According to recent studies, immunohistochemical (IHC) detection of the expression of p16 and p53 proteins allows not only to separate the two pathogenetic pathways of carcinogenesis of the external genital organs [22-24], but also to use them as prognostic markers [5, 7, 25]. Thus, understanding the pathogenetic mechanisms, improving diagnostic methods, as well as determining the disease prognosis justify the need for a detailed and further study of the issue.

THE AIM OF THE REVIEW

To characterize the similarities and differences between HPV-associated and HPV-independent vulvar squamous cell carcinoma; to consider the probable and currently known carcinogenesis pathways, precursors, as well as the features of their diagnosis.

MOLECULAR MECHANISMS OF PATHOGENESIS OF TWO TYPES OF CARCINOMAS

HPV-associated carcinomas. Human papillomavirus is the most common sexually transmitted infection [12, 26]. However, in most cases it is transient, and subsequently the virus is eliminated from the body without transform-

ing the cells [27]. Viral integration into the cell genome is an important event of carcinogenesis, leading to increased expression of the main viral E6 and E7 proteins, which in turn inactivate two tumor suppressors, namely p53 and retinoblastoma protein (pRb) [14, 27, 28]. E6 forms a triple complex with E6-associated protein (E6AP) and p53, altering the functional ability of p53 and causing degradation of this cellular protein through the ubiquitin-mediated proteolysis pathway, which leads to the absence of cell cycle arrest [29, 30]. E7 binds to pRb, which leads to the labeling of pRb for degradation, thereby releasing the E2F transcription factor from the pRb-E2F complex, which regulates cell proliferation, resulting in uncontrolled cell division [29, 31]. The Rb/E2F complex inhibits the transcription of several genes, including the CDKN2A gene encoding p16INK4a (p16). Consequently, the cleavage of Rb family members by the E7 protein leads to overexpression of p16 due to the release of the CDKN2A gene [14, 27]. An increase in the expression of the p16 protein occurs as an attempt to control uncontrolled cell division, which is mediated by a violation of the pRb pathway. However, the transduction of signals for the cell cycle arrest is also counteracted by E7-mediated activation of A and E cyclins [32]. Accelerated cell proliferation caused by high-risk HPV oncoproteins contributes to the accumulation of genetic defects, such as deletions, amplifications, translocations and chromosomal rearrangements, and leads to cell mutation [29].

HPV-independent carcinomas. In contrast to the relatively large amount of data on the pathogenesis of HPVassociated tumors, the HPV-independent pathway of VSCC has been studied much poorly, and the molecular mechanisms involved in the development of such VSCC have not yet been fully elucidated [14, 28]. According to studies, carcinomas etiologically unrelated to HPV more often contain mutations in the TP53 tumor suppressor gene. The product of this gene is the p53 protein (p53wt), whose function is to prevent DNA replication and trigger apoptosis in cells with abnormal DNA. This preserves the stability of the genome and prevents mutational changes [1, 7, 33]. Missense mutations in TP53 lead to the accumulation of mutant p53 protein (p53mut) in cell nuclei, resistant to degradation and unable to perform its functions [7, 34]. According to studies, from 67 to 80 % of all HPV-independent tumors had mutations in this gene [1, 25, 35, 36]. At the same time, they are considered an early event of a carcinogen, since they were also detected in previous lesions [28, 37]. It is worth noting that mutations in the TP53 gene can also occur in HPV-associated carcinomas, although much less frequently (about 25 % of cases). However, it is more likely that these changes are associated with the tumor progression, and not with the initiation of the process [29, 33].

Studies conducted using new generation sequencing methods have shown that *CDKN2A* is the second most frequently mutated gene, accounting for about 30–40 % of all genetic changes. As a result of its mutation, the p16 encoded by it is inactivated, which leads to disruption

of the cell cycle [18, 29, 33]. It is assumed that the combination of mutations in the *TP53* and *CDKN2A* genes correlates with a significantly worse prognosis of the disease [1, 38]. Also, *HRAS*, *PIK3CA*, *PTEN* and *NOTCH1* mutations were detected in HPV-independent carcinogenesis [8, 29, 39]. While some studies suggest that HPV-independent tumors have a large mutational load [25, 40], others [13, 39] indicated that the mutational load does not significantly depend on the HPV status. Perhaps this is due to differences in the methods of establishing the HPV status of the tumor and the use of different molecular markers.

In 2017, L.S. Nooij et al. in their work confirmed the third molecular subtype of VSCC independent of HPV and TP53 mutation using genomic sequencing [25]. The group included 43 samples from a group of 236 subjects (18 %) and showed the highest frequency of NOTCH1 and HRAS mutations. NOTCH1 is a transmembrane receptor involved in cell differentiation and proliferation. The HRAS gene is involved in the PIK3CA/AKT/mTOR pathway, which regulates the processes of cell division and apoptosis. Their mutations can probably lead to the transduction of signals that activate cell proliferation and inhibit cell death. The mechanism of carcinogenesis in this group is difficult to understand and requires further study [22, 24]. Later, other authors also identified this subtype of tumors, but with different frequency of occurrence – from 4 % [41] and 10 % [22] to 25.7 % [23]. In the study by K.E. Kortekaas et al. 63 (15%) cases from 413 studied samples were not associated with HPV and TP53 mutation [5], while L. Woelber et al. obtained this subtype in 116 of 411 carcinomas (28 %) [24].

PREVIOUS CONDITIONS AND MORPHOLOGICAL FEATURES

Vulvar intraepithelial neoplasia. The development of invasive carcinoma is a slow, multi-stage process that many years [14]. Vulvar intraepithelial neoplasia (VIN) is a non-invasive squamous cell lesion and one of the most common precursors of vulvar squamous cell carcinoma. HPV-associated carcinomas usually develop from a highgrade squamous intraepithelial lesion (HSIL), previously known as usual vulvar intraepithelial neoplasia (uVIN), whereas HPV-independent arise from a precancerous lesion called differentiated VIN (dVIN) [42, 43].

According to studies, the detection rate of HSIL is significantly higher than dVIN (90–95 % vs. 5–10 %, respectively), but the probability of progression to invasive carcinoma is higher in the group of patients with diagnosed differentiated neoplasia. The risk of malignant transformation of the vulva is up to 15 % in women with unattended HSIL, below 5 % for HSIL after treatment and approximately 30 % for patients with dVIN [44, 45]. In addition, dVIN is associated with a shorter progression period. In the study of S.M. Bigby et al. the mean interval between dVIN biopsy and diagnosis of squamous cell carcinoma was 43.5 months (range 8–102 months) [46]. Similar indicators were shown in another study that included 1,826 women with HSIL and 67 women with dVIN; the latter had a higher risk of pro-

gression to malignant neoplasm (32.8 % vs. 5.7 %, respectively), which occurred on average after 22.8 months compared with 41.4 months for HSIL [47].

Morphological changes in HSIL are similar to all HPVassociated intraepithelial lesions, for example, as in highgrade cervical dysplasia. Dysplastic changes affect usually the entire thickness of the epithelium, are characterized by pronounced cellular polymorphism, as well as a violation of the nuclear-cytoplasmic ratio with nuclear hyperchromia. Koilocytic changes in the upper layers of the epithelium are characteristic [45]. Morphological diagnosis of dVIN presents certain difficulties due to indolent atypia, a high degree of differentiation of dysplastic cells, as well as due to the lack of accurate and reproducible diagnostic evaluation criteria. Para- and dyskeratosis, basal nuclear atypia of cells with an increase in size and nucleoli are characteristic. Koilocytic changes are not detected [44, 48]. However, there is evidence that some HPV-associated precursors mimic HPV-independent lesions, and, conversely, some HPV-independent intraepithelial precursors may have HSIL traits [25, 49].

Lichen sclerosus. Chronic inflammatory disease of autoimmune etiology, characterized morphologically by dermal lymphoid infiltration, collagen hyalinization and hyperkeratosis. Previously, lichen sclerosus (LS) was designated by the following terms: kraurosis, leukoplakia, sclerotic lichen or atrophic lichen [45]. It is assumed that the mechanism of occurrence of LS is the effect of activated T cells releasing interleukin-4 and transforming growth factor β on the cells of the basal layer. Thus, these cytokines activate fibroblasts, which leads to fibrosis. A long-term chronic process leads to the accumulation of genetic mutations [50, 51]. According to M.D. Trietsch et al., the frequency of TP53 mutations in LS is 6 % [1]. In a study by L. Micheletti et al. among 976 women with LS, 34 (3.5%) patients subsequently developed intraepithelial neoplasia, and 26 (2.7 %) had invasive squamous cell carcinoma [52]. Retrospective cohort studies show that LS is detected in the adjacent tissue from 5 to 88 % of invasive carcinomas, more often in combination with dVIN [4, 46, 53]. According to a recently published systematic review, the risk of developing VSCC in women with LS ranges from 3 to 21.8 %. Such variation is probably due to the wide variation in the occurrence of LS in studies, as well as diagnostic difficulties in differentiating LS from dVIN [54].

Vulvar aberrant maturation. A new general term for HPV-independent lesions combining vulvar aberrant maturation (VAM) with minimal nuclear atypia. It includes differentiated exophytic vulvar intraepithelial lesion (DEVIL), vulvar acanthosis with altered differentiation (VAAD), warty LS [50, 55, 56]. In 2017, J. Watkins et al. noted an association between verrucous (warty) and keratinizing squamous cell carcinoma, HPV-negative and many atypical warty lesions, many of which previously defied classification and did not meet the traditional criteria for vulvar intraepithelial neoplasia or other known prior lesions. They proposed the name DEVIL and identified these lesions based on the following signs: exophytic, with pronounced acanthosis or warty hyperplasia; ab-

sence of histomorphological characteristics of HSIL; absence of basal atypia sufficient to diagnose dVIN [36]. VAAD was described by A.F. Nascimento et al. back in 2004 [57], but taking into account similar histological features, J. Watkins et al. proposed to consider it as a form of DEV-IL. They showed that these lesions demonstrate a lack of expression of abnormal p53, as well as a significant increase in the PIK3CA mutation. These data were confirmed later, in 2020, in the study of B. Tessier-Cloutier et al. [38]. Due to the rare occurrence, the malignancy potential of noninvasive warty vulvar lesions independent of HPV and *TP53* mutation is still unclear. However, it is likely that they are the precursors of the third molecular subtype of VSCC [55].

DIAGNOSTIC METHODS

Studies on the correlation between the morphological type of carcinoma and HPV status have shown that HPV-positive tumors were more often of the basaloid or warty type, whereas HPV-independent tumors were usually of the keratinizing type [20, 44]. According to a meta-analysis conducted by M.T. Faber et al., the prevalence of HPV DNA in the three main subtypes of VSCC is: 76.5 % - in warty carcinomas; 84.0 % – in basaloid carcinomas; 13.2 % – in the keratinizing type [58]. However, a large study by N. Rakislova et al., which included a large number of tissue samples (1594 paraffin blocks), showed that 36.5 % of HPV-associated carcinomas were of the usual keratinizing type [59]. In their work, A.S. Cheng et al. tried to classify VSCC as HPV-associated and independent of it, assessing the morphology of the tumor, the epithelial precursors adjacent to it and the age of the patients. Even using this multifaceted approach, they misclassified 17 % of cases regarding HPV status [20]. F. Dong et al. obtained similar data in their study, in which the results of molecular studies differed from the morphological assessment of HPV status in 21 % of cases [60]. These data once again emphasize the impossibility of reliably distinguishing HPV-associated and HPVindependent carcinomas only on the basis of morphological examination.

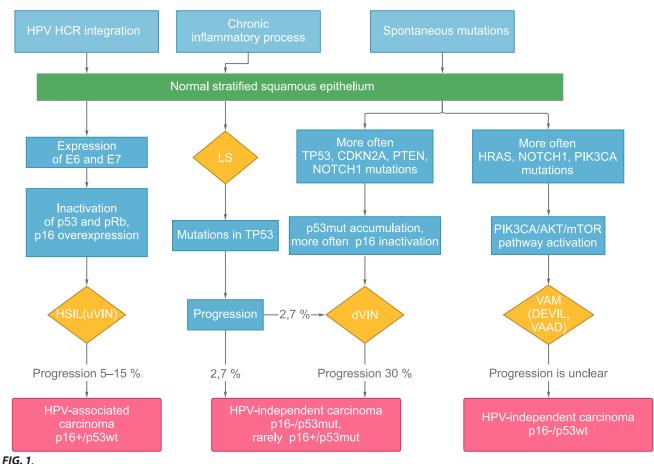
According to studies, immunohistochemical detection of p16 expression has demonstrated a high correlation with the detection of HPV DNA by PCR in cervical, anal, head and neck cancers and is considered a reliable marker of HPV-induced carcinogenesis [21, 61]. However, studies on the correlation between p16-positivity and HPV status in vulvar squamous cell cancer are controversial. Thus, in a large cohort multicenter study involving 1,709 samples, when testing for HPV DNA, the proportion of positive samples was 25.1 % (n = 429), while p16-positivity was observed only in 22.4 % (n = 377) [62]. J.J. Sznurkowsky et al. in their study showed that among 35 tissue samples with overexpression of p16, HPV DNA was absent in 10 cases (28.6 %), while among 50 tumors without overexpression of p16, HPV DNA was detected in 12 (24.0 %) cases [63]. The absence of DNA virus may be false negative, however, a highly sensitive PCR method with a wide range of primers (more than 68 types) was used in this study. The results obtained can probably be explained by the fact that the inactivation of Rb protein by E7, leading to the expression of p16, is only one potential form of the possible. Data were obtained showing a direct increase in p16 expression with chronological age. During the average life span, this protein increases approximately by 16 times [64, 65]. Thus, since VSCC is diagnosed more often in the age group of 65–70 years [3, 66], the expression of p16 may be due to the ageing rather than to the virus. The authors suggest not to consider only p16-positivity as a surrogate marker of HPV-positive status of VSCC [63].

The study by L. Woelber et al., representing part of a large retrospective study in Germany, showed that out of 411 tumor tissue samples, 204 (49.6 %) were HPV-positive DNA, while p16 expression was detected in 166 (30.2 %) samples. PCR was positive in 85.6 % of p16+ tumors (113 out of 132) and 32.3 % of all p16– tumors. Due to the unclear mutagenesis, cases of p16 discrepancy and HPV DNA detection were excluded from the analysis [24].

However, most authors have demonstrated a convincing correlation between a positive result for HPV DNA in samples and p16 expression with the method with 100% sensitivity and 98% specificity [20, 28, 67, 68]. In the study of G. Allo et al., 91% of PCR-positive cases were also p16-positive; thus, sensitivity and specificity were 91% and 84%, respectively [69].

In some studies, the authors used the result of p16 expression as the only marker of the HPV status of VSCC [16, 41, 53]. Due to the fact that overexpression of p16 can occur individually and in different biological contexts, it may be necessary to assess the presence of both markers when determining the functional significance of HPV in carcinogenesis [21, 70].

Since TP53 is the most frequently mutated gene in HPVindependent carcinogenesis, in 2020 B. Tessier-Cloutier et al. and K.E. Kortekaas et al. published studies showing a high correlation between the interpretation of p53 expression by the IHC method and its mutational status [71, 72]. According to their results, the IHC assessment of p53 expression in vulvar carcinoma samples differs from the interpretation of that in ovarian and endometrial carcinomas [73, 74]. Prior to their study, most authors in their works determined abnormal staining of p53, taking into account only the percentage of stained cells, and did not take into account their distribution among the epithelial layers [7, 60, 75–77]. The new study was able to demonstrate six different staining patterns: four displayed p53mut expression, and two displayed normal (wild) p53wt expression. The authors note that in cases of difficulty in assessing patterns, especially wild-type, interpretation of p53 staining in combination with p16 is necessary.


Thus, using the IHC analysis, three molecular subtypes of VSCC can be distinguished: 1) p16+/p53wt is associated with HPV infection; 2) p16-/p53mut, less frequently p16+/p53mut, corresponds to HPV-independent carcinoma with *TP53* mutation; 3) p16-/p53wt is HPV-independent and it is not associated with the *TP53* mutation. It should be noted that the IHC analysis is also useful for the differen-

tial diagnosis of VIN, since HSIL usually demonstrates blockpositive staining of p16 and the expression pattern of p53wt, while dVIN does not show expression for p16 and demonstrates the pattern of mutant p53 [49, 50].

Oncoproteins p16 and p53 are the most studied biomarkers for VSCC diagnosis. The question of the expediency of determining the expression of PDL-1 in immune and tumor cells in vulvar cancer remains less studied. Studies have shown that the expression of this marker does not depend on the HPV status of the tumor. In addition, there is a discrepancy in the definition of expression in the primary and metastatic lesion of carcinoma. [23, 78]. The prognostic value of PD-L1 has not been sufficiently studied. However, the data obtained indicate that its positive expression is largely associated with metastasis of the process to the lymph nodes, as well as with the worst prognosis of overall survival among patients [23, 79].

The prognostic value of p16 and p53. Recent studies show that IHC-determination of p16 and p53 expression can also be used as molecular markers of disease prognosis. In his paper K.E. Kortekaas et al. have shown that the survival rates among the three molecular subtypes of squamous cell carcinomas are different [5]. The overall 5-year survival rate was 83 % (69,9–90,3 %), 64 % (48,9–75,9 %) and 48 % (41.5–55.0 %) for p16+/p53wt, p16-/p53wt and p16-/p53mut VSCC, respectively. A sim-

ilar pattern was observed for relative survival. Among 275 p16-/p53mut cases there were 119 (43 %) recurrence compared to 16 of 63 (25 %) and 11 of 75 (15 %) for p16-/p53wt and p16+/p53wt, respectively (p < 0.0001). However, the time before the occurrence of recurrence did not differ between subtypes. L.S. Nooji et al. also demonstrated better overall and recurrence-free survival for patients with HPV-associated cancer, but the difference was not statistically significant [25]. The five-year survival rate was 75 %, 62.7 % and 56.3 % for patients with tumors p16+/p53wt, p16-/p53wt and p16-/p53mut, respectively (p = 0.296). The probability of recurrence was higher in the p16-/p53mut (22.6 %) and p16-/p53wt (16.3 %) groups compared to p16+/p53wt (5.3%). In a recently published study, L. Woelber and colleagues also studied the clinical significance of p16 and p53 expression [24]. The twoyear overall survival rates were 70.4% (p16–/p53mut), 75.4% (p16-/p53wt) and 82.5 % (p16+/p53wt) (p=0.005). For twoyear recurrence-free survival, the following indicators were obtained: 47.1 % (p16-/p53mut), 60.2 % (p16-/p53wt) and 63.9 % (p16+/p53wt) (p < 0.001). The risk of recurrence was 35.0 %, 32.0 % and 22.7 % for the p16-/p53mut, p16-/p53wt and 16+/p53wt groups, respectively. However, given the small number of articles evaluating the outcomes of all three molecular subtypes, further research in this direction is required.

Precancerous lesions (HSIL, dVIN and VAM) and molecular subtypes of vulvar squamous cell carcinoma (HPV-associated and HPV-independent) diagnosed by immunohistological analysis of p16 and p53 expression

CONCLUSION

Vulvar squamous cell carcinoma can arise from previous lesions in several pathogenetic pathways, being HPV-associated or HPV-independent. Summarizing the literature data, we have drawn up a diagram of probable pathways of pathogenesis of VSCC (Fig. 1). While morphologically these carcinomas are often similar, the mechanisms of carcinogenesis and precursors, as well as clinical outcomes, are different. Immunohistochemical analysis is a common and affordable method that allows to determine the molecular subtype of carcinoma, as well as to improve the diagnosis of precancerous conditions of VSCC. At the same time, the use of p16 and p53 biomarkers as additional predictors of the outcome of the disease is of great interest. The question of finding new diagnostic and prognostic biomarkers of the disease, for example, PD-L1, remains open. The study of its role in the carcinogenesis of external genitalia deserves attention, since it provides the possibility of using new therapeutic approaches, such as inhibition of immune checkpoints. The possibility of targeting the PI3K/Akt/mTOR pathway with inhibitors should also be considered, whose mutations are common in both HPV-associated and HPV-independent carcinomas. However, given the rare incidence of this disease, further prospective multicenter studies are needed.

Conflict of interest

The authors of this article declare the absence of a conflict of interest.

REFERENCES / ЛИТЕРАТУРА

- 1. Trietsch MD, Nooij LS, Gaarenstroom KN, van Poelgeest MI. Genetic and epigenetic changes in vulvar squamous cell carcinoma and its precursor lesions: A review of the current literature. *Gynecol Oncol.* 2015; 136: 143-157. doi: 10.1016/j.ygyno.2014.11.002
- 2. Zhang J, Zhang Y, Zhang Z. Prevalence of human papillomavirus and its prognostic value in vulvar cancer: A systematic review and meta-analysis. *PLoS One*. 2018; 13(9): e0204162. doi: 10.1371/journal.pone.0204162
- 3. Preti M, Rotondo JC, Holzinger D, Micheletti L, Gallio N, McKay-Chopin S, et al. Role of human papillomavirus infection in the etiology of vulvar cancer in Italian women. *Infect Agent Cancer*. 2020; 15: 20. doi: 10.1186/s13027-020-00286-8
- 4. Eva LJ, Sadler L, Fong KL, Sahota S, Jones RW, Bigby SM. Trends in HPV-dependent and HPV-independent vulvar cancers: The changing face of vulvar squamous cell carcinoma. *Gynecol Oncol*. 2020; 157(2): 450-455. doi: 10.1016/j.ygyno.2020.01.029
- 5. Kortekaas KE, Bastiaannet E, van Doorn HC, de Vos van Steenwijk PJ, Ewing-Graham PC, Creutzberg CL, et al. Vulvar cancer subclassification by HPV and p53 status results in three clinically distinct subtypes. *Gynecol Oncol*. 2020; 159(3): 649-656. doi: 10.1016/j.ygyno.2020.09.024
- 6. Rasmussen CL, Sand FL, Frederiksen MF, Andersen KK, Kjaer SK. Does HPV status influence survival after vulvar cancer? *Int J Cancer*. 2018; 142(6): 1158-1165. doi: 10.1002/ijc.31139

- 7. Sand FL, Nielsen DMB, Frederiksen MH, Rasmussen CL, Kjaer SK. The prognostic value of p16 and p53 expression for survival after vulvar cancer: A systematic review and meta-analysis. *Gynecol Oncol.* 2019; 152(1): 208-217. doi: 10.1016/j.ygyno.2018.10.015
- 8. Carreras-Dieguez N, Guerrero J, Rodrigo-Calvo MT, Ribera-Cortada I, Trias I, Jares P, et al. Molecular landscape of vulvar squamous cell carcinoma. *Int J Mol Sci.* 2021; 22(13): 7069. doi: 10.3390/ijms22137069
- 9. Female genital tumours: WHO classification of tumours; 5th ed. Lyon, France: International Agency for Research in Cancer; 2020.
- 10. Zur Hausen H. Papillomaviruses and cancer: From basic studies to clinical application. *Nat Rev Cancer*. 2002; 2: 342-350. doi: 10.1038/nrc798
- 11. Berman TA, Schiller JT. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. *Cancer*. 2017; 123(12): 2219-2229. doi: 10.1002/cncr.30588
- 13. Prieske K, Alawi M, Oliveira-Ferrer L, Jaeger A, Eylmann K, Burandt E, et al. Genomic characterization of vulvar squamous cell carcinoma. *Gynecol Oncol*. 2020; 158(3): 547-554. doi: 10.1016/j.ygyno.2020.06.482
- 14. Singh N, Gilks CB. Vulval squamous cell carcinoma and its precursors. *Histopathology*. 2020; 76(1): 128-138. doi: 10.1111/his.13989
- 15. Ward M, Amarnath S. *Vulvar cancer. Essentials of clinical radiation oncology.* NY: Springer Publishing Co; 2017: 430-437.
- 16. Dohopolski MJ, Horne ZD, Pradhan D, Bhargava R, Edwards RP, Kelley JL, et al. The prognostic significance of p16 status in patients with vulvar cancer treated with vulvectomy and adjuvant radiation. *Int J Radiat Oncol Biol Phys.* 2019; 103(1): 152-160. doi: 10.1016/j.ijrobp.2018.08.014
- 17. Rodrigues IS, Lavorato-Rocha AM, Stiepcich MM, de Carvalho FM, Baiocchi G, et al. Epithelial-mesenchymal transition-like events in vulvar cancer and its relation with HPV. *Br J Cancer*. 2013; 109(1): 184-194. doi: 10.1038/bjc.2013.273
- 18. van de Nieuwenhof HP, van Kempen LC, de Hullu JA, Bekkers RLM, Bulten J, Melchers WJG, et al. The etiologic role of HPV in vulvar squamous cell carcinoma fine tuned. *Cancer Epidemiol Biomarkers Prev.* 2009; 18(7): 2061-2067. doi: 10.1158/1055-9965. EPI-09-0209
- 19. Weberpals JI, Lo B, Duciaume MM, Spaans JN, Clancy AA, Dimitroulakos J, et al. Vulvar squamous cell carcinoma (VSCC) as two diseases: HPV status identifies distinct mutational profiles including oncogenic fibroblast growth factor receptor 3. *Clin Cancer Res.* 2017; 23(15): 4501-4510. doi: 10.1158/1078-0432. CCR-16-3230
- 20. Cheng AS, Karnezis AN, Jordan S, Singh N, McAlpine JN, Gilks CB. p16 immunostaining allows for accurate subclassification of vulvar squamous cell carcinoma into HPV-associated and HPV-independent cases. *Int J Gynecol Pathol*. 2016; 35(4); 385-393. doi: 10.1097/PGP.00000000000000263
- 21. Prigge ES, von Knebel Doeberitz M, Reuschenbach M. Clinical relevance and implications of HPV-induced neoplasia

in different anatomical locations. *Mutat Res Rev Mutat Res*. 2017; 772: 51-66. doi: 10.1016/j.mrrev.2016.06.005

- 22. Barlow EL, Lambie N, Donoghoe MW, Naing Z, Hacker NF. The clinical relevance of p16 and p53 status in patients with squamous cell carcinoma of the vulva. *J Oncol.* 2020; 2020: 3739075. doi: 10.1155/2020/3739075
- 23. Garganese G, Inzani F, Fragomeni SM, Mantovani G, Corte L, Piermattei A, et al. The Vulvar Immunohistochemical Panel (VIP) project: Molecular profiles of vulvar squamous cell carcinoma. *Cancers*. 2021; 13(24): 6373. doi: 10.3390/cancers13246373
- 24. Woelber L, Prieske K, Eulenburg C, Oliveira-Ferrer L, de Grigorio N, Klapdor R, et al. p53 and p16 expression profiles in vulvar cancer: A translational analysis by the Arbeitsgemeinschaft Gynakologische Onkologie Chemo and Radiotherapy in Epithelial Vulvar Cancer study group. *Am J Obstet Gynecol.* 2021; 224(6): 1-11. doi: 10.1016/j.ajog.2020.12.1220
- 25. Nooij LS, Ter Haar NT, Ruano D, Rakislova N, van Wezel T, Smit THBM, et al. Genomic characterization of vulvar (pre)cancers identifies distinct molecular subtypes with prognostic significance. *Clin Cancer Res.* 2017; 23(22): 6781-6789. doi: 10.1158/1078-0432. CCR-17-1302
- 26. Bonde JH, Sandri M-T, Gary DS, Andrews JC. Clinical utility of human papillomavirus genotyping in cervical cancer screening: A systematic review. *J Low Genit Tract Dis*. 2020; 24(1): 1-13. doi: 10.1097/LGT.00000000000000494
- 27. Prati B, Marangoni B, Boccardo E. Human papillomavirus and genome instability: From productive infection to cancer. *Clinics*. 2018; 73(1): e539s. doi: 10.6061/clinics/2018/e539s
- 28. Del Pino M, Rodriguez-Carunchio L, Ordi J. Pathways of vulvar intraepithelial neoplasia and squamous cell carcinoma. *Histopathology.* 2013; 62(1): 161-175. doi: 10.1111/his.12034
- 29. Zieba S, Chechlinska M, Kowalik A, Kowalewska M. Genes, pathways and vulvar carcinoma New insights from nextgeneration sequencing studies. *Gynecol Oncol.* 2020; 158(20): 498-506. doi: 10.1016/j.ygyno.2020.05.034
- 30. Li S, Hong X, Wei Z, Xie M, Li W, Liu G, et al. Ubiquitination of the HPV oncoprotein E6 is critical for E6/E6AP-mediated p53 degradation. *Front Microbiol*. 2019; 10: 2483. doi: 10.3389/fmicb.2019.02483
- 31. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F. The HPV E6/E7 oncogenes: Key factors for viral carcinogenesis and therapeutic targets. *Trends Microbiol*. 2018; 26(2): 158-168. doi: 10.1016/j.tim.2017.07.007
- 32. Estevao D, Costa NR, Gil da Costa RM, Medeiros R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy. *Biochim Biophys Acta Gene Regul Mech.* 2019; 1862(2): 153-162. doi: 10.1016/j.bbagrm.2019.01.001
- 33. Xing D, Liu Y, Park HJ, Baek I, Tran H, Cheang G, et al. Recurrent genetic alterations and biomarker expression in primary and metastatic squamous cell carcinomas of the vulva. *Hum Pathol.* 2019; 92: 67-80. doi: 10.1016/j.humpath.2019.08.003
- 34. Liu Y, Ji J, Almadani N, Crawford R, Gilks C, Kinloch M, et al. Comparison of p53 immunohistochemical staining in differentiated vulvar intraepithelial neoplasia (dVIN) to inflammatory dermatoses and benign squamous lesions in the vulva. *Histopathology*. 2021; 78(3): 424-433. doi: 10.1111/his.14238
- 35. Kashofer K, Regauer S. Analysis of full coding sequence of the TP53 gene in invasive vulvar cancers: Implications

- for therapy. *Gynecol Oncol*. 2017; 146(2): 314-318. doi: 10.1016/j.ygyno.2017.05.018
- 36. Watkins JC, Howitt BE, Horowitz NS, Ritterhouse LL, Dong F, MacConaill LE, et al. Differentiated exophytic vulvar intraepithelial lesions are genetically distinct from keratinizing squamous cell carcinomas and contain mutations in PIK3CA. *Mod Pathol.* 2017; 30(3): 448-458. doi: 10.1038/modpathol.2016.187
- 37. Rakislova N, Alemany L, Clavero O, Saco A, Torné A, del Pino M, et al. p53 immunohistochemical patterns in HPV-independent squamous cell carcinomas of the vulva and the associated skin lesions: A study of 779 cases. *Int J Mol Sci.* 2020; 21(21): 8091. doi: 10.3390/ijms21218091
- 38. Tessier-Cloutier B, Pors J, Thompson E, Ho J, Prentice L, McConechy M, et al. Molecular characterization of invasive and in situ squamous neoplasia of the vulva and implications for morphologic diagnosis and outcome. *Mod Pathol*. 2021; 34(2): 508-518. doi: 10.1038/s41379-020-00651-3
- 39. Williams EA, Werth AJ, Sharaf R, Montesion M, Sokol ES, Pavlick DC, et al. Vulvar squamous cell carcinoma: Comprehensive genomic profiling of HPV+ versus HPV– forms reveals distinct sets of potentially actionable molecular targets. *JCO Precis Oncol*. 2020; 4: 647-661. doi: 10.1200/PO.19.00406
- 40. Han MR, Shin S, Park HC, Kim MS, Lee SH, Jung SH, et al. Mutational signatures and chromosome alteration profiles of squamous cell carcinomas of the vulva. *Exp Mol Med*. 2018; 50(2): e442. doi: 10.1038/emm.2017.265
- 41. Proctor L, Hoang L, Moore J, Thompson E, Leung S, Natesan D, et al. Association of human papilloma virus status and response to radiotherapy in vulvar squamous cell carcinoma. *Int J Gynecol Cancer*. 2020; 30(1): 100-106. doi: 10.1136/ijgc-2019-000793
- 42. Pils S, Gensthaler L, Alemany L, Horvat R, de Sanjose S, Joura EA. HPV prevalence in vulvar cancer in Austria. *Wiener klinische Wochenschrift*. 2017; 129: 805-809. doi: 10.1007/s00508-017-1255-2
- 43. Wakeham K, Kavanagh K, Cuschieri K, Millan D, Pollock KG, Bell S, et al. HPV status and favourable outcome in vulvar squamous cancer. *Int J Cancer*. 2017; 140(5): 1134-1146. doi: 10.1002/ijc.30523
- 44. Hoang LN, Park KJ, Soslow RA, Murali R. Squamous precursor lesions of the vulva: Current classification and diagnostic challenges. *Pathology*. 2016; 48(4): 291-302. doi: 10.1016/j.pathol.2016.02.015
- 45. Cohen PA, Anderson L, Eva L, Scurry J. Clinical and molecular classification of vulvar squamous pre-cancers. *Int J Gynecol Cancer*. 2019; 29(4): 821-828. doi: 10.1136/ijgc-2018-000135
- 46. Bigby SM, Eva LJ, Fong KL, Jones RW. The natural history of vulvar intraepithelial neoplasia, differentiated type: Evidence for progression and diagnostic challenges. *Int J Gynecol Pathol.* 2016; 35(6): 574-584. doi: 10.1097/PGP.0000000000000280
- 47. van de Nieuwenhof HP, Massuger LF, van der Avoort IA, Bekkers RLM, Casparie M, Abma W, et al. Vulvar squamous cell carcinoma development after diagnosis of VIN increases with age. *Eur J Cancer*. 2009; 45(5): 851-856. doi: 10.1016/j.ejca.2008.11.037
- 48. Jin C, Liang S. Differentiated vulvar intraepithelial neoplasia: A brief review of clinicopathologic features. *Arch Pathol Lab Med*. 2019; 143(6): 768-771. doi: 10.5858/arpa.2018-0019-RS

- 49. Rakislova N, Alemany L, Clavero O, Del Pino M, Saco A, Marimon L, et al. HPV-independent precursors mimicking high-grade squamous intraepithelial lesions (HSIL) of the vulva. *Am J Surg Pathol*. 2020; 44(11): 1506-1514. doi: 10.1097/PAS.0000000000001540
- 50. Heller DS, Day T, Allbritton JI, Scurry J, Radici G, Welch K, Preti M. Diagnostic criteria for differentiated vulvar intraepithelial neoplasia and vulvar aberrant maturation. *J Low Genit Tract Dis.* 2021; 25: 57-70. doi: 10.1097/LGT.0000000000000572
- 51. Perez-Lopez FR, Vieira-Baptista P. Lichen sclerosus in women: A review. *Climacteric*. 2017; 20(4): 339-347. doi: 10.108 0/13697137.2017.1343295
- 52. Micheletti L, Preti M, Radici G, Boveri S, Di Pumpo O, Privitera SS, et al. Vulvar lichen sclerosus and neoplastic transformation: A retrospective study of 976 cases. *J Low Genit Tract Dis.* 2016; 20(2): 180-183. doi: 10.1097/LGT.000000000000186
- 53. McAlpine JN, Leung SCY, Cheng A, Miller D, Talhouk A, Gilks CBG, et al. Human papillomavirus (HPV)-independent vulvar squamous cell carcinoma has a worse prognosis than HPV-associated disease: A retrospective cohort study. *Histopathology*. 2017; 71(2): 238-246. doi: 10.1111/his.13205
- 54. Leis M, Singh A, Li C, Ahluwalia R, Fleming P, Lynde CW. Risk of vulvar squamous cell carcinoma in lichen sclerosus and lichen planus: A systematic review. *J Obstet Gynaecol Can*. 2022; 44(2): 182-192. doi: 10.1016/j.jogc.2021.09.023
- 55. Roy SF, Wong JW, Page CL, Tran-Thanh D, Barkati M, Pina A, et al. DEVIL, VAAD and vLSC constitute a spectrum of HPV-independent, p53-independent intra-epithelial neoplasia of the vulva. *Histopathology*. 2021; 79(6): 975-988. doi: 10.1111/his.14451
- 56. Day T, Marzol A, Pagano R, Jaaback K, Scurry J. Clinicopathologic diagnosis of vulvar intraepithelial neoplasia and vulvar aberrant maturation. *J Lower Genit Tract Dis.* 2020; 24(4): 317-329. doi: 10.1097/LGT.0000000000000569
- 57. Nascimento AF, Granter SR, Cviko A, Yuan L, Hecht JL, Crum CP. Vulvar acanthosis with altered differentiation: A precursor to verrucous carcinoma? *Am J Surg Pathol*. 2004; 28(5): 638-643. doi: 10.1097/00000478-200405000-00012
- 58. Faber MT, Sand FL, Albieri V. Prevalence and type distribution of human papillomavirus in squamous cell carcinoma and intraepithelial neoplasia of the vulva. *Int J Cancer*. 2017; 141(6): 1161-1169. doi: 10.1002/ijc.30821
- 59. Rakislova N, Clavero O, Alemany L, Saco A, Quirós B, Lloveras B, et al. Histological characteristics of HPV-associated and -independent squamous cell carcinomas of the vulva: A study of 1594 cases. *Int J Cancer*. 2017; 141(12): 2517-2527. doi: 10.1002/ijc.31006
- 60. Dong F, Kojiro S, Borger DR, Growdon WB, Oliva E. Squamous cell carcinoma of the vulva: A subclassification of 97 cases by clinicopathologic, immunohistochemical, and molecular features (p16, p53, and EGFR). *Am J Surg Pathol*. 2015; 39: 1045-1053. doi: 10.1097/PAS.0000000000000454
- 61. Koerber SA, Schoneweg C, Slynko A, Krug D, Haefner MF, Herfarth K, et al. Influence of human papillomavirus and p16(INK4a) on treatment outcome of patients with anal cancer. *Radiother Oncol.* 2014; 113(3): 331-336. doi: 10.1016/j.radonc.2014.11.013
- 62. De Sanjosé S, Alemany L, Ordi J, Tous S, Alejo M, Bigby SM, et al. Worldwide human papillomavirus genotype at-

- tribution in over 2000 cases of intraepithelial and invasive lesions of the vulva. *Eur J Cancer*. 2013; 49(16): 3450-3461. doi: 10.1016/j.ejca.2013.06.033
- 63. Sznurkowski JJ, Zawrocki A, Biernat W. The overexpression of p16 is not a surrogate marker for high-risk human papilloma virus genotypes and predicts clinical outcomes for vulvar cancer. *BMC Cancer*. 2016; 16: 465. doi: 10.1186/s12885-016-2503-y
- 64. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. *Cell.* 2006; 127(2): 265-275. doi: 10.1016/j.cell.2006.10.003
- 65. LaPak KM, Burd CE. The molecular balancing act of p16(INK4a) in cancer and aging. *Mol Cancer Res.* 2014; 12(2): 167-183. doi: 10.1158/1541-7786.MCR-13-0350
- 66. Hacker NF, Eifel PJ, van der Velden J. Cancer of the vulva. *Int J Gynecol Obstet*. 2015; 131: 76-83. doi: 10.1016/j.ijgo.2015.06.002
- 67. Santos M, Landolfi S, Olivella A, Lloveras B, Klaustermeier J, Suárez H, et al. p16 overexpression identifies HPV-positive vulva squamous cell carcinomas. *Am J Surg Pathol*. 2006; 30(11): 1347-1356. doi: 10.1097/01.pas.0000213251.82940.bf
- 68. Cao H, Wang S, Zhang Z, Lou J. Prognostic value of over-expressed p16lNK4a in vulvar cancer: A meta-analysis. *PLoS One*. 2016; 11(3): e0152459. doi: 10.1371/journal.pone.0152459
- 69. Allo G, Yap ML, Cuartero J, Milosevic M, Ferguson S, Mackay H, et al. HPV-independent vulvar squamous cell carcinoma is associated with significantly worse prognosis compared with HPV-associated tumors. *Int J Gynecol Pathol*. 2020; 39(4): 391-399. doi: 10.1097/PGP.00000000000000020
- 70. von Knebel Doeberitz M. The causal role of human papillomavirus infections in non-anogenital cancers. It's time to ask for the functional evidence. *Int J Cancer*. 2016; 139: 9-11. doi: 10.1002/ijc.30059
- 71. Tessier-Cloutier B, Kortekaas KE, Thompson E, Pors J, Chen J, Ho J, et al. Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status. *Mod Pathol*. 2020; 33(8): 1595-1605. doi: 10.1038/s41379-020-0524-1
- 72. Kortekaas KE, Solleveld-Westerink N, Tessier-Cloutier B, Rutten TA, Van Poelgeest M, Gilks CB, et al. Performance of the pattern based interpretation of p53 immunohistochemistry as a surrogate for TP53 mutations in vulvar squamous cell carcinoma. *Histopathology*. 2020; 77(1): 92-99. doi: 10.1111/his.14109
- 73. Köbel M, Ronnett BM, Singh N, Soslow RA, Gilks CB, McCluggage WG. Interpretation of P53 immunohistochemistry in endometrial carcinomas: Toward increased reproducibility. *Int J Gynecol Pathol*. 2019; 38: 123-131. doi: 10.1097/PGP.00000000000000488
- 74. Na K, Sung JY, Kim HS. TP53 mutation status of tubo-ovarian and peritoneal high-grade serous carcinoma with a wild-type p53 immunostaining pattern. *Anticancer Res.* 2017; 37(12): 6697-6703. doi: 10.21873/anticanres.12128
- 75. Hay CM, Lachance JA, Lucas FL, Smith KA, Jones MA. Biomarkers p16, human papillomavirus and p53 predict recurrence and survival in early stage squamous cell carcinoma of the vulva. *JLow Genit Tract Dis*. 2016; 20(3): 252-256. doi: 10.1097/LGT.000000000000182
- 76. Falcón MF, Paradeda MF, Kamermann FG, Maldonado V, Díaz L, Cardinal L. Immunohistochemistry of p16 and p53 in vulvar cancer. *Medicina (B Aires)*. 2020; 80(2): 127-133.

77. Choschzick M, Hantaredja W, Tennstedt P, Gieseking F, Wölber L, Simon R. Role of TP53 mutations in vulvar carcinomas. *Int J Gynecol Pathol.* 2011; 30: 497-504. doi: 10.1097/PGP.0b013e3182184c7a

78. Czogalla B, Pham D, Trillsch F, Rottmann M, Gallwas J, Burges A, et al. PD-L1 expression and survival in p16-negative

and positive squamous cell carcinomas of the vulva. *J Cancer Res Clin Oncol*. 2020; 146: 569-577. doi: 10.1007/s00432-020-03126-9

79. Sznurkowski JJ, Zawrocki A, Sznurkowska K, Peksa R, Biernat W. PD-L1 expression on immune cells is a favorable prognostic factor for vulvar squamous cell carcinoma patients. *Oncotarget*. 2017; 8: 89903-89912. doi: 10.18632/oncotarget.20911

Information about the authors

Maria I. Pakharukova — Biologist at the Laboratory of Cytology, Clinical Diagnostic Center of Yekaterinburg; Junior Research Officer at the Laboratory of Immunophysiology and Immunopharmacology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, e-mail: Pakharukovami@gmail.com, https://orcid.org/0000-0001-6019-3463

Boris G. Yushkov – Dr. Sc. (Med.)., Professor, Corresponding Member of RAS, Head of the Laboratory of Immunophysiology and Immunopharmacology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, e-mail: b.yushkov@iip.uran.ru, https://orcid.org/0000-0001-6368-0099

Yakov B. Beikin – Dr. Sc. (Biol.), Professor, Chief Physician, Clinical Diagnostic Center of Yekaterinburg; Head of the laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, e-mail: inbox@kdc-lab.ru