н.А. Ишутина

АНТИОКИСЛИТЕЛЬНАЯ АКТИВНОСТЬ ОЛЕИНОВОЙ КИСЛОТЫ У БЕРЕМЕННЫХ С ГЕРПЕС-ВИРУСНОЙ ИНФЕКЦИЕЙ

ФГБУ «Дальневосточный научный центр физиологии и патологии дыхания» СО РАМН (Благовещенск)

С целью изучения антиокислительной активности мононенасыщенной олеиновой кислоты методом газожидкостной хроматографии проведено исследование содержания данного соединения в периферической крови (плазма, мембраны эритроцитов) беременных, перенесших в различные сроки гестации обострение хронической герпес-вирусной инфекции с титром антител IgG к вирусу простого герпеса 1-го типа 1:12800.

В результате проведенных исследований установлено, что обострение герпес-вирусной инфекции с высоким по интенсивности течением (титр антител IgG к вирусу простого герпеса 1-го типа 1 : 12800) сопровождается снижением концентрации данной кислоты как в плазме (в I триместре — на 15 %, во II триместре — на 9 %, в III триместре — на 20 %, по сравнению с контролем), так и в мембранах эритроцитов (в I триместре — на 12 %, во II триместре — на 10 % и в III триместре — на 17 %, по сравнению с контролем) и является компенсаторным механизмом, направленным на уменьшение повреждающего действия продуктов, образующихся в результате активации процессов перекисного окисления липидов. Следовательно, у беременных с обострением герпес-вирусной инфекции (титр антител IgG к вирусу простого герпеса 1-го типа 1 : 12800) нарушается антиоксидантная защита, обусловленная низким уровнем олеиновой кислоты, что приводит к изменению ингибирования и усиления процессов радикалообразования, которые оказывают повреждающее действие на структурные компоненты мембран эритроцитов, вызывая их разрушение. Таким образом, можно предположить, что мононенасыщенная олеиновая кислота вносит огромный вклад в антиокислительную активность крови и в условиях обострения хронической герпес-вирусной инфекции, при активации процессов перекисного окисления липидов и низкой концентрации а-токоферола, может выступать как эндогенный биологический антиоксидант и захватчик АФК. Поэтому лечение беременных с данной патологией будет более успешным, если в комплекс медикаментозной терапии, наряду с препаратами, нормализующими липидный обмен, включать антиоксиданты, что способствует благоприятному исходу беременности и родов.

Ключевые слова: беременность, герпес-вирусная инфекция, олеиновая кислота

ANTIOXIDANT ACTIVITY OF OLEIC ACID IN PREGNANT WOMEN WITH HERPES-VIRUS INFECTION

N.A. Ishutina

Far Eastern Scientific Center of Physiology and Respiratory Pathology SB RAMS, Blagoveshchensk

The research by gas-fluid chromatography of content of monounsaturated oleic acid in peripheral blood (plasma, membranes of erythrocytes) of pregnant women who had worsening of chronic herpes-virus infection with IgG antibodies titre to herpes simplex virus of the 1st type 1: 12800 was realized to study antioxidant activity of this compound.

As the result it was determined that worsening of herpes-virus infection with high-intensive course (IgG antibodies titre to herpes simplex virus of the 1^{st} type 1:12800) was accompanied by the decrease of concentration of the acid both in plasma (1^{st} trimester -15 %, 2^{nd} trimester -9 %, 3^{rd} trimester -20 % in comparison with control values) and in the membranes of erythrocytes (1^{st} trimester -12 %, 2^{nd} trimester -10 %, 3^{rd} trimester -17 % in comparison with control values) and is compensatory mechanism aimed at the decrease of damaging action of products formed as the result of activation of lipid peroxidation processes. Therefore pregnant women with worsening of herpes-virus infection (IgG antibodies titre to herpes simplex virus of the 1^{st} type 1:12800) have disorders in antioxidant activity caused by low level of oleic acid that leads to the changes of inhibition and aggravation of processes of radical-production that have damaging action on structural components of the membranes of erythrocytes by their destruction. Consequently we can suppose that monounsaturated oleic acid has great contribution in antioxidant activity of blood and can be endogenous biologic antioxidant and reactive oxygen species invader in conditions of aggravation of chronic herpes-virus infection at the activation of lipid peroxidation processes and low consentration of a-tocopherol. That's why the treatment of pregnant women with this pathology will be more successful if antioxidants are included in complex of drug therapy together with drugs normalizing lipid exchange that promote favorable outcome of pregnancy and delivery.

Key words: pregnancy, herpes-virus infection, oleic acid

Современные представления о развитии и исходах воспалительных реакций в организме основываются на ведущей роли мембранодеструктивных процессов. Наиболее существенная роль в механизмах мембранодеструкции принадлежит процессам перекисного окисления липидов (ПОЛ) клеточных мембран. Процесс ПОЛ характеризует собой появление высокореактивных продуктов с

нарушением биохимических процессов в клетке, дезорганизацией клеточных макромолекул, нарушением клеточных и органных функций [3]. Как правило, перекиси липидов образуются при ферментативном и неферментативном переокислении ненасыщенных жирных кислот. Наиболее подвержены переокислению арахидоновая, линолевая и линоленовая кислоты [2].

Одной из систем защиты в организме человека являются антиоксиданты (а-токоферол, аскорбиновая кислота), нейтрализующие токсические продукты, образующиеся в процессе ПОЛ. Основным местом фиксации в клетке токоферола являются биомембраны. Находясь в липидной фазе биологических мембран, он взаимодействует с токсичными радикалами, предохраняя неповрежденные фосфолипиды, в частности, жирные кислоты от переокисления. В связи с этим токоферол способен оказывать регулирующее влияние на жирно-кислотный состав, обладая мембраностабилизирующими свойствами [1].

В последние годы внимание исследователей привлекает олеиновая кислота не только как структурный компонент клеточных мембран, но и как эндогенный, биологический антиоксидант. Уникальность физико-химических свойств олеиновой кислоты состоит в том, что активные формы кислорода (АФК) окисляют ее с наиболее высокой константой скорости реакции. АФК в первую очередь окисляют олеиновую кислоту, во вторую – арахидоновую, в третью – линолевую жирные кислоты. Только после завершения окисления олеиновой кислоты оставшийся пул АФК реагирует с арахидоновой кислотой, образуя диеновые коньюгаты. При сопоставлении констант окисления отмечено, что действие «традиционных» антиоксидантов, захватчиков АФК, по сравнению с действием олеиновой кислоты, является незначительным [6]. В доступной литературе отсутствуют данные об изменении олеиновой кислоты в периферической крови беременных с герпес-вирусной инфекцией.

Цель работы: изучить антиоксидантные свойства олеиновой кислоты в периферической крови у беременных с обострением герпес-вирусной инфекции.

МАТЕРИАЛЫ И МЕТОДЫ

Проведено исследование олеиновой кислоты в периферической крови беременных, перенесших обострение герпес-вирусной инфекции (ГВИ) с титром антител IgG к вирусу простого герпеса-1 типа (ВПГ-1) 1:12800 в различные сроки гестации. В качестве группы контроля обследованы 60 практически здоровых беременных на тех же сроках. Липиды экстрагировали по методу Фолча [10]. Олеиновую кислоту в плазме крови и мембранах эритроцитов выявляли методом газожидкостной хроматографии на хроматографе «Кристалл 2000м» (Россия) с пламенно-ионизационным детектором. Метилирование жирных кислот осуществляли по методу Carren [9]. Обсчет и идентификацию пиков выполняли с помощью программно-аппаратного комплекса Хроматэк Аналитик 2,5 по временам удерживания с использованием стандартов фирмы «Supelco» (USA). Количественный расчет хроматограмм проводили методом внутренней нормализации путем определения площадей пиков анализируемых компонентов и их доли (в относительных %) в общей сумме площадей пиков метилированых продуктов высших жирных кислот.

Титр антител к ВПГ-1 определяли по динамике антител IgG с помощью стандартных тест-систем ЗАО «Вектор-Бест» (Новосибирск) на микропланшетном ридере «Stat-Fax 2100» (USA). Все исследования были проведены с учетом требований Хельсинской декларации Всемирной ассоциации «Этические принципы проведения научных медицинских исследований с участием человека» с поправками 2000 г. и «Правилами клинической практики в Российской Федерации», утвержденными Приказом Минздрава РФ от 19.06.2003 г. № 226. Полученные данные обработаны методами вариационной статистики с использованием критерия Стьюдента.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ полученных результатов исследования показал, что если в период гестации беременная перенесла обострение ГВИ, то обмен олеиновой кислоты значительно изменялся (табл. 1).

Таблица 1 Содержание олеиновой кислоты в периферической крови беременных с обострением герпес-вирусной инфекции (% от суммы) (М ± m)

Группа	Плазма	Мембраны
I триместр		
Контроль	16,45 ± 0,41	18,38 ± 0,60
ГВИ (титр антител IgG к ВПГ-1 1:12800) (<i>n</i> = 20)	14,06 ± 0,35 p < 0,001	16,12 ± 0,74 p < 0,001
II триместр		
Контроль	17,10 ± 0,36	19,24 ± 0,52
ГВИ (титр антител IgG к ВПГ-1 1:12800) (<i>n</i> = 20)	15,64 ± 0,21 p < 0,001	17,40 ± 0,63 p < 0,001
III триместр		
Контроль	16,87 ± 0,24	19,86 ± 0,68
ГВИ (титр антител IgG к ВПГ-1 1:12800) (<i>n</i> = 20)	13,44 ± 0,26 p < 0,001	16,51 ± 0,57 p < 0,001

Примечание: *p* – уровень значимости различий между показателями с контрольной группой.

Так, при титре антител IgG к ВПГ-1 1:12800 содержание олеиновой кислоты в плазме периферической крови беременных уменьшалось в І триместре на 15 %, во II триместре — на 9 %, в III триместре — на 20 %, по сравнению с контролем (табл. 1). Выявленное снижение уровня олеиновой кислоты в плазме периферической крови беременных с обострением ГВИ является угрожающим фактором, способствующим уменьшению ее включения в мембраны эритроцитов, что снижает антиокислительные свойства мембран, усиливающих дестабилизацию процессов. Данное предположение подтверждалось низкими значениями концентрации данной кислоты в мембранах эритроцитов периферической крови беременных, которые при титре антител IgG к ВПГ-1 1:12800 снижались в І триместре на 12 %, во II триместре — на 10 %, в III триместре — на 17 % по сравнению с контролем (табл. 1).

Олеиновая кислота функционально призвана сохранить в целостности переносимые в липидной фазе липопротеидами низкой плотности (ЛПНП)

микроколичества антиоксидантов α-токоферола и β-каротина и обеспечить поглощение их специализированными клетками, в которых они реализуют свои биологические функции [6]. Пока в лаг-фазе (период индукции) есть олеиновая кислота с более высокой константой скорости окисления, АФК реагируют с ней; когда она заканчивается, оставшийся пул АФК окисляет арахидоновую кислоту, формируя диеновые коньюгаты. Окисление α-токоферола происходит быстрее и заканчивается раньше, чем окисление арахидоновой кислоты, несмотря на менее высокие константы скорости реакции. Это определено особенностями локализации отдельных липидов в структуре ЛПНП. В структуре ЛПНП более гидрофобные эфиры арахидоновой кислоты (холестерол арахидонат) располагаются внутри полости белка апо В-100, а триглицериды локализованы на наружной поверхности. Среди всего перечня антиоксидантов и захватчиков АФК олеиновая кислота единственная является одновременно как активным антиоксидантом, так и активным захватчиком АФК. Как антиоксидант олеиновая кислота при ее этерификации в sn-2 и sn-3 позиции спирта глицерина формирует такую стереохимию триглицеридов, которая в наибольшей степени соответствует стереоспецифичности (параметрам активного цента) постгапериновой липопротеинлипазы. Чем выше активность липолиза в крови, тем быстрее все клетки поглощают образованные ремнанты хиломикронов, липопротеиды очень низкой плотности и ЛПНП, и в крови отсутствуют ЛПНП – эндогенные патогены. Как захватчик АФК олеиновая кислота инактивирует их с такой скоростью, которая на порядок превышает окисление АФК любым иным экзогенным захватчиком, и при этом не накапливаются продукты реакции [7, 8].

Выявленное изменение содержания олеиновой кислоты у беременных с обострением ГВИ происходило при активации процессов ПОЛ с накоплением ТБК-активных продуктов [4] на фоне угнетения антиоксидантной защиты [5]. Следовательно, низкая концентрация антиоксиданта α-токоферола в периферической крови беременных с обострением ГВИ недостаточна для поддержания гомеостаза организма, что может приводить к истощению антиоксидантной защиты и будет способствовать росту процессов радикалообразования с формированием конечных продуктов. При всем этом, α-токоферол является антиоксидантом, который не образуется в клетках и должен поступать извне, в отличие от олеиновой кислоты, синтезируемой в организме. Возможно, недостаточность функционирования антиоксидантной системы в организме беременных при титре антител IgG к ВПГ-1 1:12800, включает дополнительное использование олеиновой кислоты для ингибирования токсинов, находящихся в кровяном русле, а следовательно, более лабильное в регуляторном отношении. Поэтому можно предположить, что обмен олеиновой кислоты, характеризующийся снижением содержания данного соединения в периферической крови беременных с обострением ГВИ, являлся компенсаторным механизмом, направленным на уменьшение повреждающего действия токсических радикалов, образующихся в результате активации процессов ПОЛ.

ЗАКЛЮЧЕНИЕ

У беременных с обострением ГВИ нарушается антиоксидантная защита, обусловленная низким уровнем олеиновой кислоты, что приводит к изменению системности ингибирования и усиления процессов радикалообразования, которые оказывают повреждающее действие на структурные компоненты мембран эритроцитов, вызывая их разрушение. Тем самым можно предположить, что олеиновая кислота, вносит огромный вклад в «антиокислительную» активность крови и может выступать как эндогенный биологический антиоксидант и захватчик АФК. Поэтому лечение беременных с данной патологией будет более успешным, если в комплекс медикаментозной терапии, наряду с препаратами, нормализующими липидный обмен, включать антиоксиданты, что способствует благоприятному исходу беременности и родов.

ЛИТЕРАТУРА

- 1. Биленко М.В. Ишемические и реперфузионные повреждения органов (молекулярные механизмы, пути предупреждения и лечение). М.: Медицина, 1989. 386 с.
- 2. Владимиров Ю.А, Арчаков Р.М. Перекисное окисление липидов в биологических мембранах. М.: Наука, 1972. $252 \, \mathrm{c}$.
- 3. Горожанская Э.Г. Свободнорадикальное окисление и механизмы антиоксидантной защиты в нормальной клетке и при опухолевых заболеваниях // Клин. лаб. диагностика. 2010. № 6. С. 28-44.
- 4. Ишутина Н.А. Перекисное окисление липидов и микровязкость мембран эритроцитов у женщин с обострением герпес-вирусной инфекции // Дальневосточный мед. журнал. 2012. № 1. С. 59-61.
- 5. Луценко М.Т., Довжикова И.А., Соловьева А.С. и др. Фетоплацентарная система при герпесной инфекции. Благовещенск, 2003. 200 с.
- 6. Титов В.Н. Олеиновая жирная кислота. Олеиновые, линолевые и линоленовые липопротеины низкой плотности // Клин. лаб. диагностика. 2006. № 6. C. 3-13.
- 7. Титов В.Н., Лисицын Д.М. Регуляция перекисного окисления in vivo как этап воспаления. Олеиновая кислота, захватчики активных форм кислорода и антиоксидант // Клин. лаб. диагностика. 2005. N 6. С. 3 11.
- 8. Титов В.Н., Лисицын Д.М., Разумовский С.Д. Методические вопросы и диагностическое значение определения перекисного окисления липидов в липопротеинах низкой плотности. Олеиновая кислота как биологический антиоксидант (обзор литературы) // Клин. лаб. диагностика. 2005. \mathbb{N}_2 4. \mathbb{C} . 3-10.

- 9. Carren J.P., Dubacy J.P-J. Adaptation of a micro-seale metod to the micro-seale for fatty acid methyl trausestenif: cation of biological lipid extracts // Chromatography. 1978. Vol. 151. P. 384—390.
- 10. Folch J., Lees M., Sloane G.H. A simple metod for the isolation and purification of total lipids from animals tissues // J. Biol. Chem. 1957. Vol. 226. P. 497 509.

Сведения об авторах

Ишутина Наталия Александровна – кандидат биологических наук, старший научный сотрудник, лаборатории механизмов этиопатогенеза и восстановительных процессов дыхательной системы при неспецифических заболеваниях легких ФГБУ «Дальневосточный научный центр физиологии и патологии дыхания» СО РАМН (675000, г. Благовещенск, ул. Калинина, 22; тел./факс: 8 (4162) 52-59-57; e-mail: ishutina-na@mail.ru)

28