УДК 578.833.29:578.5

Л.Н. Яшина ¹, С.А. Абрамов ², Г.Н. Данчинова ³, В.В. Гуторов ¹, Р. Янагихара ⁴

ХАНТАВИРУС SEEWIS (SWSV) И ЕГО ПРИРОДНЫЕ НОСИТЕЛИ НА ТЕРРИТОРИИ СИБИРИ

¹ Государственный научный центр вирусологии и биотехнологии «Вектор» (Кольцово, Новосибирская обл.)
² Институт систематики и экологии животных СО РАН (Новосибирск)
³ Научный центр проблем здоровья семьи и репродукции человека СО РАМН (Иркутск)
⁴ Гавайский университет в Маноа (Гавайи, США)

Представлено генетическое доказательство циркуляции хантавирусов среди насекомоядных в России. На территории Сибири установлено широкое распространение хантавируса Seewis (SWSV), открытого в Швейцарии от обыкновенной бурозубки. Впервые показано, что вирус SWSV встречается у нескольких близкородственных видов бурозубок: Sorex araneus, S. tundrensis и S. daphaenodon. Очаги циркуляции вируса SWSV выявлены в Республике Алтай, Красноярском крае, Кемеровской, Новосибирской областях и в окрестностях городов Новосибирск и Иркутск.

Ключевые слова: хантавирус, бурозубки, Сибирь

HANTAVIRUS SEEWIS AND RESERVOIR SPECIES IN SIBERIA

L.N. Yashina ¹, S.A. Abramov ², G.A. Danchinova ³, R. Yanagihara ⁴

¹ State Research Center of Virology and Biotechnology «Vector», Koltsovo ² Institute of Systematic and Ecology of Animals, SB RAS, Novosibirsk ³ Scientific Center of Family Health and Human Reproduction Problems SB RAMS, Irkutsk ⁴ University of Hawaii at Manoa, Honolulu, Hawaii, USA

Genetic evidence of shrew-borne hantavirus in Russia is presented here. Impressive distribution of a hantavirus Seewis (SWSV), previously discovered in the Eurasian common shrew from Switzerland was demonstrated in Siberia among closely related shrew species: Sorex araneus, S. tundrensis and S. daphaenodon. SWSV circulation was shown in Altai Republic, Krasnoyarsk Krai, Kemerovo and Novosibirsk regions, surburbs of Novosibirsk and Irkutsk Cities.

Key words: hantavirus, shrews, Siberia

ВВЕДЕНИЕ

Хантавирусы, принадлежащие к роду Hantavirus семейства Bunyaviridae, широко распространены во многих регионах мира и являются возбудителями двух клинически различных форм заболевания человека: геморрагической лихорадки с почечным синдромом в Евразии и хантавирусного легочного синдрома в Северной и Южной Америке [11]. Природным резервуаром хантавирусов являются грызуны отряда Rodentia, причем каждый хантавирус ассоциирован с уникальным видом или несколькими близкородственными видами. Эпизоотологические исследования мелких млекопитающих, проводимые в очагах ГЛПС в России, давали основание предполагать, что бурозубки и кроты также могут служить резервуаром хантавирусов [1-3], однако прямые доказательства циркуляции хантавирусов в популяциях насекомоядных отсутствовали.

До недавнего времени единственным исключением из ассоциаций хантавирус — грызун был вирус Thottapalayam (TPMV), изолированный не от грызуна, а от представителя насекомоядных - азиатской гигантской белозубки (Suncus murinus), отловленной в Индии [14]. В течение пяти последних лет были получены доказательства того, что природными носителями хантавирусов являются

не только грызуны, но и насекомоядные семейств Soricidae и Talpidae, у которых обнаружено 12 новых хантавирусов [6, 12]. На территории Европы выявлены вирусы Seewis (SWSV) в обыкновенной бурозубке (Sorex araneus) из Швейцарии и Nova (NVAV) в европейском обыкновенном кроте (Talpa europea) из Венгрии [6, 12]. Распространение хантавирусов, имеющих природными резервуарами насекомоядных, и возможность инфицирования этими вирусами человека остаются важными нерешенными задачами. Нами был проведен поиск и изучение генетического многообразия хантавирусов в популяциях насекомоядных семи административных регионов Сибири.

МАТЕРИАЛЫ И МЕТОДЫ

Отлов животных и сбор образцов тканей проведены в различных биоценозах на территории Западной и Восточной Сибири (Республике Алтай, Алтайском и Красноярском краях, Новосибирской, Омской, Кемеровской и Иркутской областях) в период 2007—2008 гг.

Отлов мелких млекопитающих и отбор образцов осуществляли в соответствии с протоколом и рекомендациями по безопасной работе [9]. Образцы тканей легких помещали в жидкий азот, либо в стабилизирующий раствор RNAlater RNA

Stabilization Reagent (QIAGEN GmbH, Германия) для последующего выделения РНК и ее анализа методом обратной транскрипции — полимеразной цепной реакции (ОТ — Π ЦР).

Вид землероек определен на основе строения тела и зубного аппарата специалистами-зоологами в Институте систематики и экологии животных СО РАН (Новосибирск). Дополнительно для подтверждения таксономической принадлежности бурозубок проведено определение и сопоставление с базой данных GenBank фрагмента гена цитохрома в митохондриальной ДНК (мтДНК) по методу, описанному в [9].

Вирусную кДНК синтезировали с использованием Expand reverse transcriptase (Roche, Германия) и родоспецифического праймера HPS (5'-TAGTAGTAGACTCC). Продукты двухраундовой амплификации получали с использованием двух серий праймеров по стандартному протоколу с использованием Таф ДНК-полимеразы производства фирмы «Сибэнзим» (Новосибирск). Первая серия праймеров и условия проведения реакции были описаны ранее [10], вторая серия праймеров была выбрана авторами. Для первого раунда использован праймер, комплементарный 5'- и 3'-концам S-сегмента генома S2FR: 5`-TAGTAGTA(G/T) (G/A)СТСССТААА(G/A)АG, для второго раунда использована пара праймеров: 387(+) G(A/T) GG(A/C/T)CA(G/A)AC(A/T)GCAGA(C/T)TGG и 1263(-) AGCTCAGGATCCATGTCATC.

Для построения филогенетических деревьев использован метод максимального правдоподобия с моделью эволюции $GTR+I+\Gamma$ в программе PAUP 4.0b10, выполненный на сервере RAxML Blackbox [13].

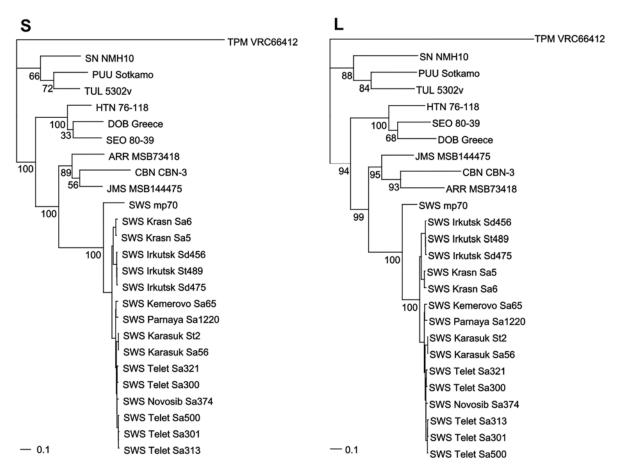
РЕЗУЛЬТАТЫ

Для анализа географического распространения и генетического разнообразия хантави-

русов, циркулирующих в землеройковых (сем. Soricidae) в Сибири, ткани легких от 90 бурозубок (45 обыкновенных (S. araneus), 28 тундряных (S. tundrensis), 5 средних (S. caecutiens), 3 крупнозубых (S. daphaenodon), 9 малых (S. minutus)) и 6 сибирских белозубок (Crocidura sibirica) были проанализированы методом ОТ-ПЦР с использованием праймеров для L- и S-сегментов генома. Хантавирусная РНК была выявлена в образцах тканей 15 бурозубок, отловленных в 7 из 11 исследованных ключевых участков: северное побережье Телецкого озера (с. Артыбаш, Турочакский р-н, Республика Алтай), Крапивинский р-н (Кемеровская обл.), окрестности г. Карасук и лесопарковая зона Новосибирского Академгородка (Новосибирская область), с. Парная (Шарыповский р-он Красноярского края), Западный Саян (Красноярский край) и окрестности г. Иркутска (Иркутская область) (табл. 1).

Анализ последовательностей L- (2968 – 3313 н.о.) и S-сегментов (407 — 1243 н.о.) генома РНК изолятов от 11 S. araneus, двух S. tundrensis, двух S. daphaenodon показал их сходство с вирусом SWSV, ранее выявленным от S. araneus в Швейцарии [6]. Установлено, что выявленные вирусные последовательности являются новыми генетическими вариантами вируса SWSV и отличаются от изолята mp70 из Швейцарии на 16,3 – 20,2 % по нуклеотидным последовательностям и на 1,7 % по кодируемым аминокислотным последовательностям для L-сегмента, и на 17,4 – 19,1 % и 1,4 % для S-сегмента, соответственно. Выравнивание и сравнение новых последовательностей между собой установило уровень вариабельности геномов сибирских изолятов вируса SWSV 0-11,0 % н.о. и 0 % а.о. для L- сегмента и 0.2-8.5 % н.о. и 0 % а.о. для S-сегмента, соответственно. Уровень от-

Таблица 1 РНК изоляты вируса SWSV, выявленные в Сибири в бурозубках рода Sorex


Вид	Место отлова	РНК изолят	GenBank #
S. araneus	Республика Алтай, Телецкое	Telet-Sa300	GQ284578, EU424334
		Telet-Sa301	GQ284577, EU424335
		Telet-Sa313	GQ284579, EU424336
		Telet-Sa321	GQ284575, EU424337
		Telet-Sa500	GQ284576, EU424338
	Кемеровская обл., Крапивино	Kemerovo-Sa65	GQ284582, GQ267812
	Новосибирская обл., Новосибирск	Novosib-Sa374	GQ284581, GQ267804
	Новосибирская обл., Карасук	Karasuk-Sa56	GQ284586, GQ267809
	Красноярский край, Западный Саян	Krasn-Sa5	GQ284584, GQ267811
		Krasn-Sa6	GQ355616, GQ284583
	Красноярский край, Парная	Parnaya-Sa1220	GQ284580, GQ267810
S. daphaenodon	Иркутская обл., Иркутск	Irkutsk-Sd456	GQ284572, GQ267805
		Irkutsk-Sd475	GQ284573, GQ267806
S. tundrensis	Иркутская обл., Иркутск	Irkutsk-St489	GQ284574, GQ267807
	Новосибирская обл., Карасук	Karasuk-St2	GQ284585, GQ267808

личия новых нуклеотидных последовательностей от других ранее известных типов хантавирусов, выявленных у грызунов и насекомоядных, варьирует от 24,5 до 35,6 % и от 31,9 до 48,4 %, соответственно.

Новые последовательности группировались по географическому принципу. Нуклеотидные последовательности изолятов из одного места отлова показали минимальные различия, даже в том случае, если они были выявлены от разных видов насекомоядных. Так, нуклеотидные последовательности вирусных изолятов от S. araneus и S. tundrensis, отловленных в окрестностях города Карасук Новосибирской области, были идентичными для L-сегмента и отличались на 0,2 % для S-сегмента. Аналогичным образом, нуклеотидные последовательности S- и L-сегментов изолятов от S. daphaenodon и S. tundrensis, отловленных в окрестностях г. Иркутска, различались на 0,3-0,6 % и 0,9-1,2 %, соответственно. Напротив, последовательности изолятов вируса SWSV, выявленных от пяти особей S. araneus, отловленных в окрестностях Телецкого озера, образовывали две отдельные группы и продемонстрировали достаточно высокий уровень межгрупповой дивергенции для L-сегмента (6,4-7,7%). Уровень различия последовательностей S-сегмента был ниже и составлял 0.9-2.4 %.

Филогенетический анализ, основанный на фрагментах 346 н.о. и 837 н.о. L- и S-сегментов, соответственно, продемонстрировал группирование изолятов вируса SWSV по географическому принципу независимо от вида бурозубок - носителей вируса (рис. 1). Полученные результаты не согласуются с данными о строгом соответствии между видом вируса и видом его носителя, опубликованным ранее для большинства хантавирусов, переносимых грызунами [11]. Выявленная корреляция между генетическими различиями изолятов вируса SWSV и географическим происхождением видовносителей свидетельствует о локальной видо-специфической адаптации в ходе эволюции вируса.

Обыкновенная бурозубка, являясь широко распространенным видом, имеет один из наиболее вариабельных кариотипов среди мелких млекопитающих и образует более 70 хромосомных рас, распространенных на территории Европы и Сибири. Семь хромосомных рас в Сибири последовательно сменяют друг друга в направлении с запада на восток [4]. На основе опубликованных исследований можно предполагать, что, по крайней мере, четыре хромосомные расы обыкновенной

Рис. 1. Филогенетические деревья, отображающие объединение сибирских изолятов вируса SWSV по географическому признаку. Деревья построены на основе нуклеотидных последовательностей S- и L-сегментов генома длиной 837 и 346 н.о., соответственно, с использованием метода максимального правдоподобия, модель эволюции GTR+I+G, индексы поддержки рассчитаны для 1000 повторов.

бурозубки обитают на изученной нами территории: Новосибирская раса (Novosib-Sa374), Томская раса (Kemerovo-Sa65 и Parnaya-Sa1220), раса Стрелка (Krasn-Sa5 и Krasn-Sa6) и Алтайская раса (Telet-Sa300, Telet-Sa301, Telet-Sa313, Telet-Sa321 и Telet-Sa500). Наши исследования показали высокий уровень дивергенции последовательностей L-сегмента (до 7,7 %) среди изолятов с Телецкого озера. Основываясь на гипотезе ко-эволюции хантавирусов и их хозяев, можно предположить, что две различные группы изолятов SWSV с Телецкого озера могут иметь различную эволюционную историю и циркулируют не в единой Алтайской расе, а в двух различных расах. Второй расой может быть либо новая неизвестная раса, либо Семинская раса [4], которая была обнаружена в Республике Алтай на расстоянии 100 км от места отлова на Телецком озере.

ЗАКЛЮЧЕНИЕ

В последние годы значительное внимание уделялось выявлению новых видов - носителей хантавирусов среди мелких млекопитающих, в частности, насекомоядных. Выполненное исследование является первым молекулярным доказательством циркуляции хантавирусов среди бурозубок в России. Нами установлено широкое распространение на территории Сибири вируса SWSV, открытого в 2007 г. в Швейцарии. Впервые показано, что вирус SWSV встречается у нескольких близкородственных видов бурозубок рода Sorex: S. araneus, S. tundrensis и S. daphaenodon. Очаги циркуляции вируса SWSV выявлены в Республике Алтай, Красноярском крае, Кемеровской, Новосибирской областях. Наши данные подтверждают более ранние публикации о выявлении хантавирусного антигена в S. araneus на территории России [1-3] и идентифицируют тип хантавируса. Основываясь на полученных нами данных, а также литературных данных по выявлению SWSV в Швейцарии [12], Венгрии и Финляндии [8], находках антигена хантавируса у S. araneus из европейской части России [2], можно сделать заключение о широком распространение вируса SWSV на территории географического распространения обыкновенной бурозубки от Центральной и Северной Европы до Восточной Сибири. Широкое распространение SWSV может быть следствием исходного инфицирования хантавирусом предковой формы бурозубок с последующими переносами вируса между хозяевами и локальной адаптацией в течение длительного эволюционного времени.

Важнейшим нерешенным вопросом остается вопрос о патогенности для человека хантавирусов, циркулирующих среди насекомоядных. К настоящему времени получено лишь косвенное свидетельство инфицирования человека вирусом TPMV, основанное на выявлении антител к вирусу TPMV у людей [5]. Прямое генетическое доказательство ассоциации хантавирусов, выявленных от бурозубок и кротов, с заболеванием человека

в настоящее время отсутствует. Установленная нами циркуляция вируса SWSV в окрестностях больших городов (Новосибирска и Иркутска) и на территории с интенсивной туристической деятельностью (побережье Телецкого озера) дает веские основания для исследования роли выявленных вирусов в патологии человека.

Авторы искренне благодарны зоологам Т.А. Дупал, А.В. Кривопалову, В.В. Панову, А.А. Позднякову, Д.В. Петровскому из Института систематики и экологии животных СО РАН (г. Новосибирск), А.Ф. Тимошенко из Института эпидемиологии и микробиологии СО РАМН (г. Иркутск), В.В. Виноградову из Красноярского государственного университета и Е.М. Лучниковой из Кемеровского государственного университета за их вклад в исследование.

ЛИТЕРАТУРА

- 1. Арбовирусы в Прибайкалье / Е.А. Чапоргина [и др.] // Бюлл. ВСНЦ СО РАМН. 2002. № 2 (4). С. 127 130.
- 2. Изучение циркуляции вируса геморрагической лихорадки с почечным синдромом среди мелких млекопитающих на территории СССР / Е.А. Ткаченко [и др.] // Вопр. вирусол. 1987. \mathbb{N}° 32 (6). С. 709 715.
- 3. Размещение природных очагов геморрагической лихорадки с почечным синдромом в различных ландшафтных зонах Тюменской области. / Ю.А. Мясников [и др.] // Вопр. вирусол. 1992. \mathbb{N}_2 37 (3). С. 161—165.
- 4. Хромосомная эволюция обыкновенной бурозубки Sorex araneus L. в послеледниковое время на Южном Урале и в Сибири / А.В. Поляков [и др.] // Генетика. 2001. N2 37 (4). C.448-455.
- 5. Development of serological assays for Thottapalayam virus, an insectivore-born hantavirus. / M. Okumura [et al.] // Clin. Vaccine Immunol. 2007. P. 173—181.
- 6. Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (*Talpa europaea*) / H.J. Kang [et al.] // PLoS One. 2009. Vol. 4. e6149.
- 7. Genetic analysis of the diversity and origin of hantaviruses in *Peromyscus leucopus* mice in North America / S.P. Morzunov [et al.] // J. Virol. 1998. Vol. 72. P. 57—64.
- 8. Genetic diversity and phylogeography of Seewis virus in the Eurasian common shrew in Finland and Hungary / H.J. Kang [et al.] // Virol. J. -2009. Vol. 6. P. 208.
- 9. Methods for trapping and sampling small mammals for virologic testing. U.S. Department of Health and Human Services, Center for Disease Control and Prevention / J.N. Mills [et al.]. Atlanta, 1995.
- 10. Phylogenetically distinct hantaviruses in the masked shrew (*Sorex cinereus*) and dusky shrew (*Sorex monticolus*) in the United States / S. Arai [et al.] // Am. J. Trop. Med. Hyg. 2008. Vol. 78. P. 348—351.

- 11. Schmaljohn C., Hjelle B. Hantaviruses: a global disease problem // Emerg. Infect. Dis. - 1987. -Vol. 3. - P. 95 - 104.
- 12. Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus) / J.-W. Song [et al.] // Virol. J. — 2007. — Vol. 4. — P. 114 – 118.
- 13. Stamatakis A., Hoover P., Rougemont J. A rapid bootstrap algorithm for the RAxML web servers // Syst. Biol. — 2008. — Vol. 57. — P. 758 — 771.
- 14. Thottapalayam virus: a presumptive arbovirus isolated from a shrew in India / D.E. Carey [и др.] // Indian J. Med. Res. - 1971. - Vol. 59. -P. 1758 - 1760.

Сведения об авторах

Яшина Людмила Николаевна – к.х.н., зав. лаб. ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор» (630559, р.п. Кольцово, Новосибирского р-на, Новосибирской обл.; тел. (383) 336-74-28)

Абрамов Сергей Александрович – к.б.н., с.н.с. Института систематики и экологии животных СО РАН

Данчинова Галина Анатольевна – д.б.н., руководитель лаборатории ФГБУ «Научный центр проблем здоровья семьи и репродукции человека» СО РАМН (Иркутск) **Гуторов Валерий Викторович** – н.с., ФБУН Государственный научный центр вирусологии и биотехнологии «Вектор», р.п.

Кольцово

Yanagihara Richard - Professor, University of Hawaii at Manoa, 651 Ilalo Street, BSB 320L, Honolulu, Hawaii 96813, USA, M.D.